PENKO Engineering B.V.

Your Partner for Fully Engineered Factory Solutions

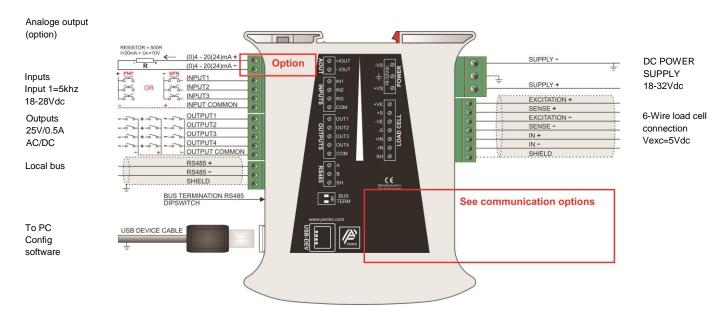
How to...

Connect a SGM740 or SGM840 to a Siemens PLC

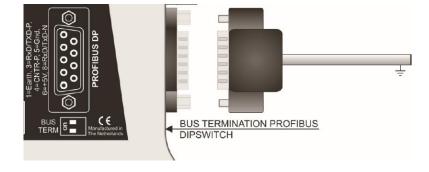
PENKO How to... Connect a SGM740 or SGM840 to a Siemens PLC

Table of Contents

General information	4
GSD File	5
Wiring	5
Setup the SGM740 or SGM840	6
Simatic Manager (1)	7
Create a project	7
Setting up the Profibus network	10
Install the GSD file	16
Add the SGM740 or SGM840 to the Profibus network	18
SIMATIC Manager (2)	23
GSD file explanation	25
Inputs	25
Read weight register	26
Read status	28
Read commands	30
Read weight select register	32
Read inputs	33
Read outputs	34
Read preset Tare	35
Read indicator gross x 10	36
Read indicator net x 10	37
Read indicator tare x 10	38
Read multirange weight	39
Outputs	40
Set commands	41
Set weight select register	43
Set preset tare	45
Set level 1	46
Set level 2	47
Set level 3	48


PENKO How to... Connect a SGM740 or SGM840 to a Siemens PLC

	Set level 4	49
Со	mplete program to read and write values	50
	Variable table	51
	Read:	51
	Write:	52

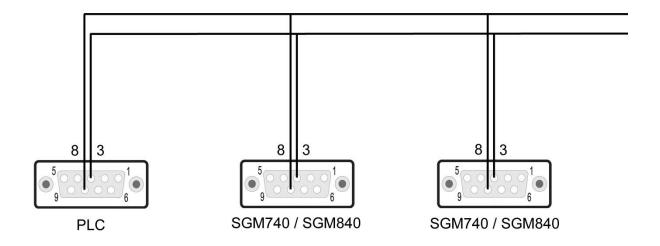

General information

When the SGM740 or SGM840 is powered by USB (not 24Vdc) the communication, load cell interface and the analog output will not work.

SGM740

Profibus connection

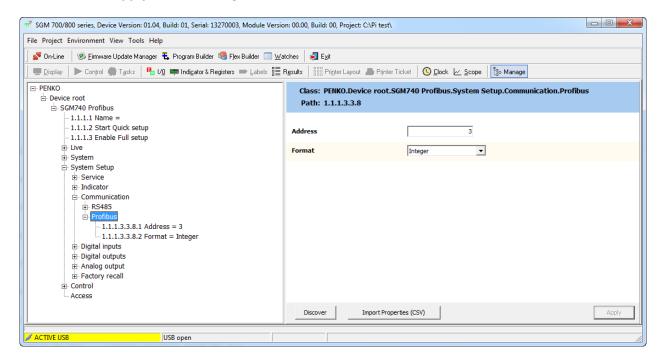
GSD File


The GSD File can be found at our website www.penko.com. The filename is PSGM0E28.GSD.

Wiring

To connect the SGM740 or SGM840 to a PLC, you only need to connect wire 3 (RxD/TxD-P) and 8 (RxD/TxD-N) of the connector as shown below. The first and last device on the chain need to have the bus termination.

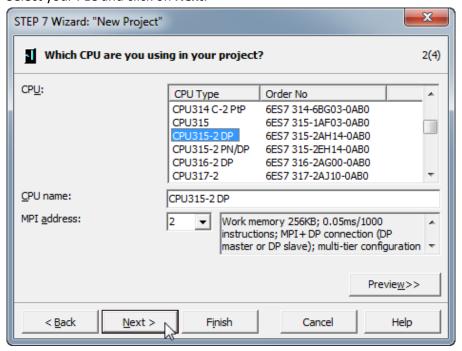
If you use an original Profibus connector make sure that you use the bus termination on the Profibus connector and not on the SGM740 or SGM840 (the dipswitch next to the Profibus connector must be both in the "OFF" position), otherwise the Profibus communication will not work.


If you do not use an original Profibus connector with a termination. You must set the dipswitch next to the Profibus connector both in the "ON" position.

Setup the SGM740 or SGM840

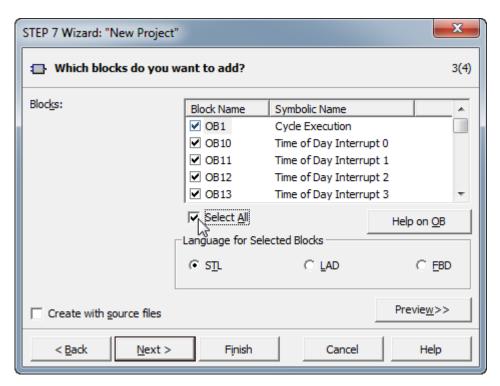
Connect the SGM740 or SGM840 to a PC using an USB-cable and open Pi Mach II and double click on **SGM740** or **SGM840**, double click on **Enable Full Setup** then double click on **System Setup**, double click on **Communication**, and double click on **Profibus**, set the **Address** and **Format** the same as picture below. Click on **Apply** to save settings.

Simatic Manager (1)

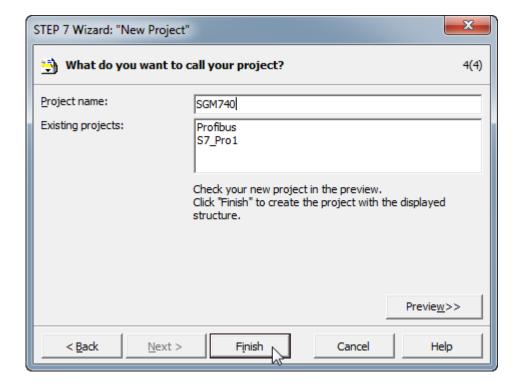

In the example below we use a Siemens Simatic S7-300 CPU315-2-DP PLC.

Create a project

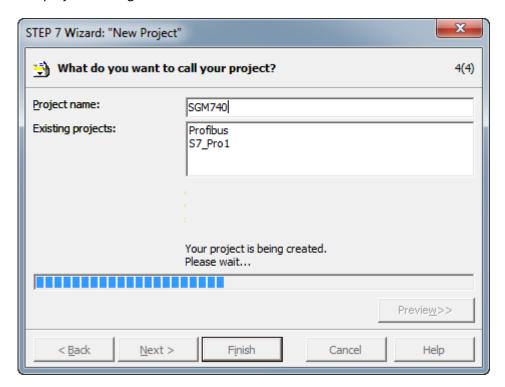
Open Simatic Manager and follow the STEP 7 Wizard. Click on Next to begin the Wizard.



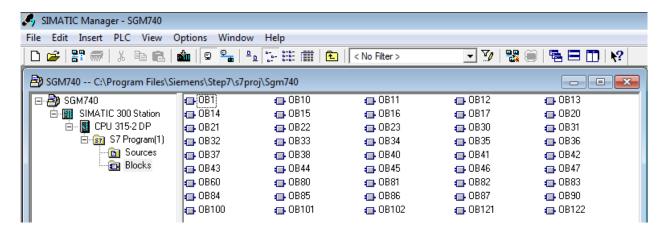
Select your PLC and click on Next.



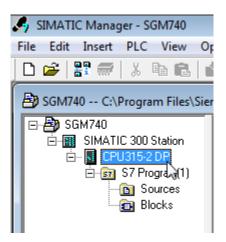
Select the blocks you want to add. In the example below we select all the blocks. When the blocks are selected, click on **Next**.

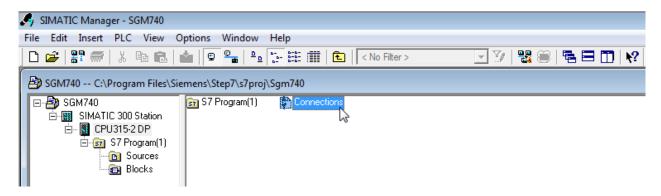


Give the project a name and click on Finish.

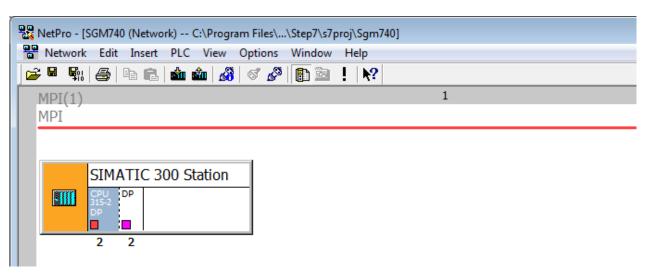


The project is being created.

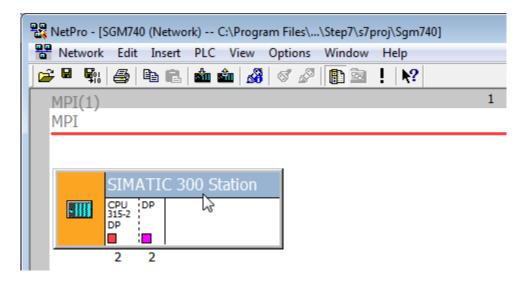

The project is shown below.



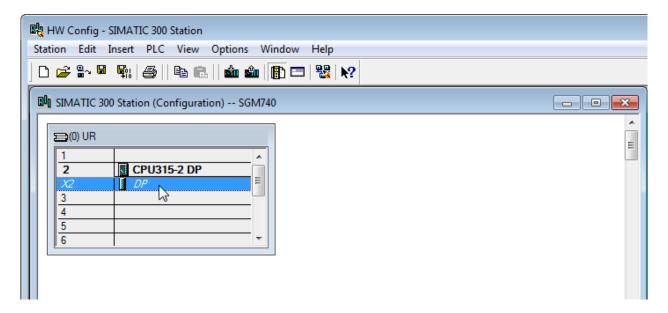
Setting up the Profibus network


Click on your CPU name.

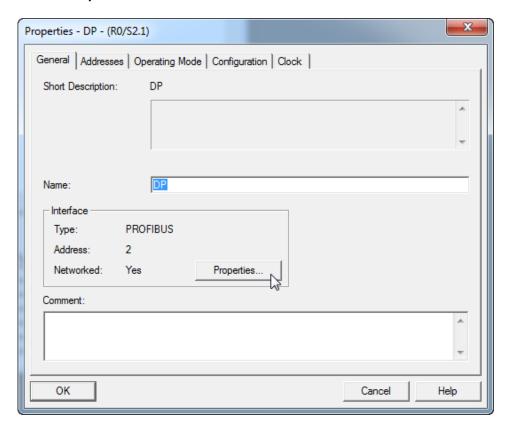
Double click on Connections.



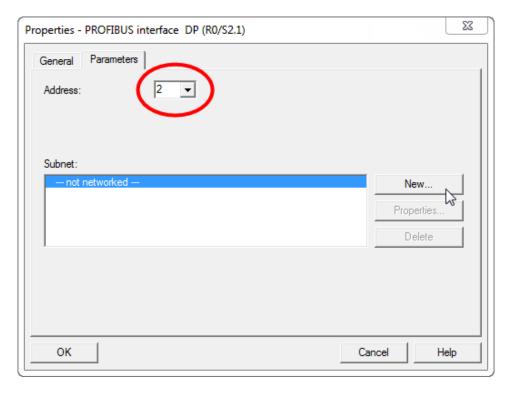
The program **NetPro** will open.



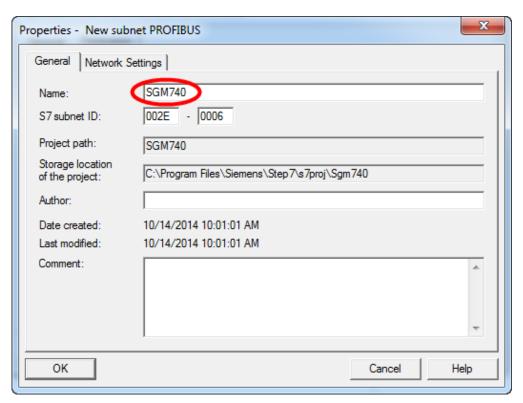
Double click on SIMATIC 300 Station.



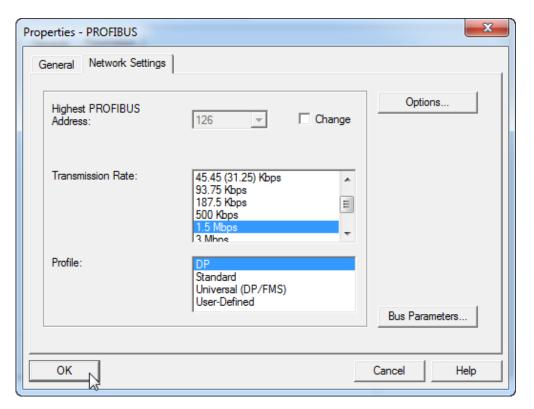
The program **HW Config** will open. Double click on the line **DP**.



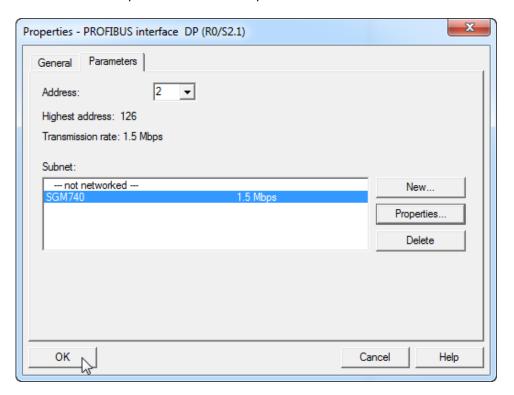
Click on **Properties**.



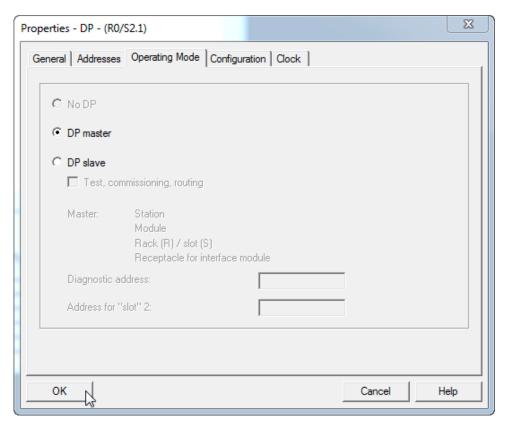
Set the Profibus address for the PLC and click on **New** to set up a Subnet.



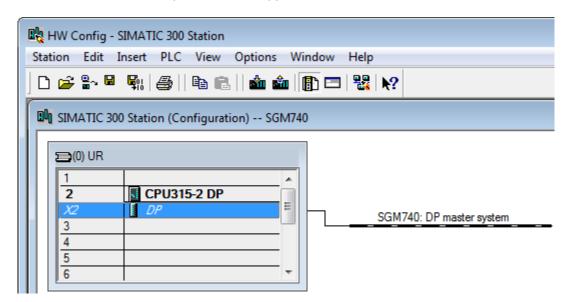
Give the subnet a name and go to the tap **Network Settings**.



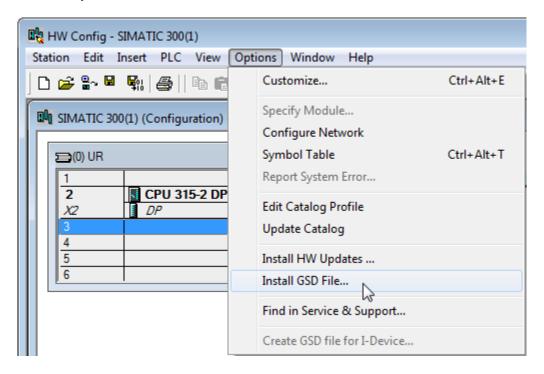
Set the Transmission Rate and Profile and click on OK.

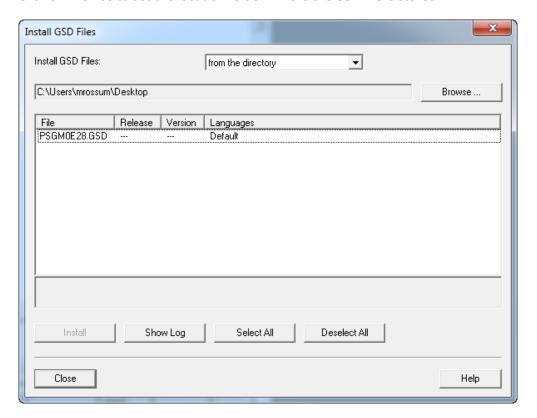


Click on **OK** to complete the Subnet setup.



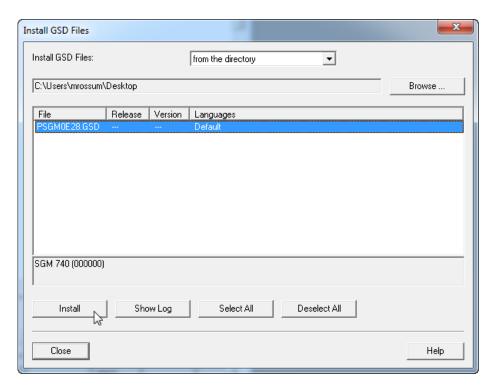
Go to the tab **Operating Mode** and make sure **DP master** is chosen. Click on **OK**.


The SGM740: DP master system line will appear.



Install the GSD file

Click on Options and Install GSD File....

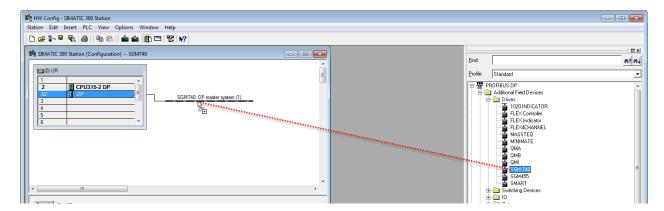

Click on **Browse** to set the location folder where the GSD file is stored.

16

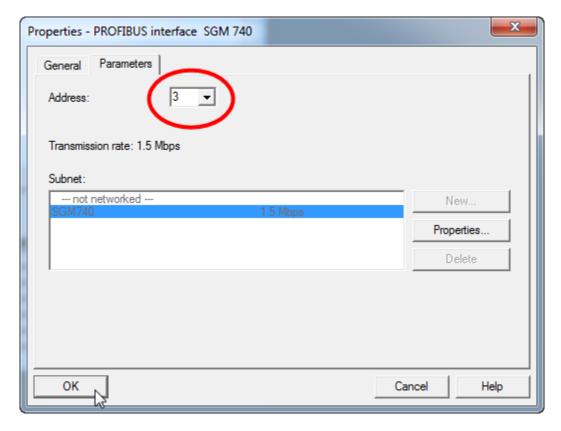

Select the GSD file and click on Install.

The following pop-up will appear, click on Yes.

When the installation is completed the following pop-up will appear. Click on **OK**.

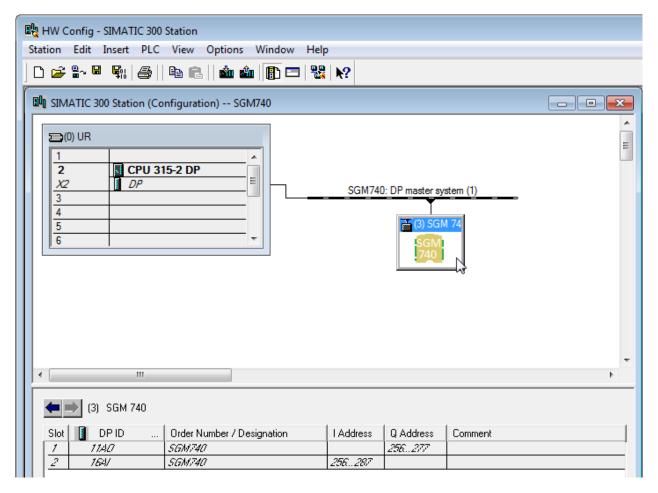


Click on **Close** to close the Install GSD Files window.



Add the SGM740 or SGM840 to the Profibus network

The SGM740 or SGM840 can now be found under **Profibus DP** \rightarrow **Additional Field Devices** \rightarrow **Drivers**. Drag the SGM740 or SGM840 to the DP master system.

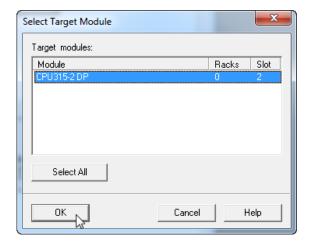

Set the Profibus address of the SGM740 or SGM840 (the same address as used in Pi Mach II) and click on **OK**. See <u>Setup the SGM740 or SGM840</u>.

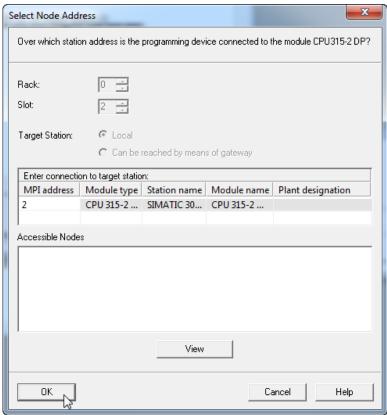
The SGM740 or SGM840 is now connected to the SGM740: DP master system (1).

Note: when the SGM740 or SGM840 is selected, the Input and Output address of the SGM740 or SGM840 is shown. These addresses are important to remember and are needed later to read the data from the SGM740 or SGM840 or set data to the SGM740 or SGM840.

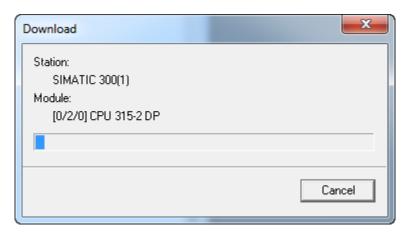

SGM740 or SGM840	Start address	End address
Input address	256	287
Output address	256	277

Click on Save to save the configuration.

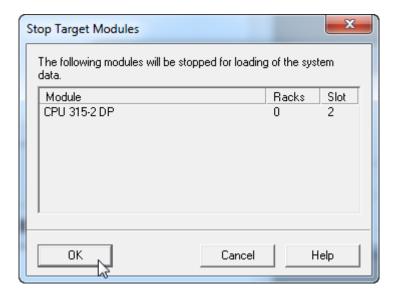


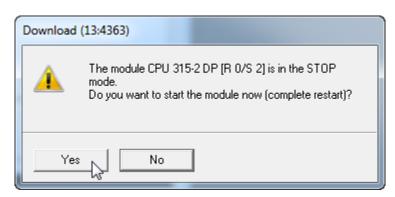

Click on **Download to Module** to load the settings into the PLC.

Select the PLC and click on OK.

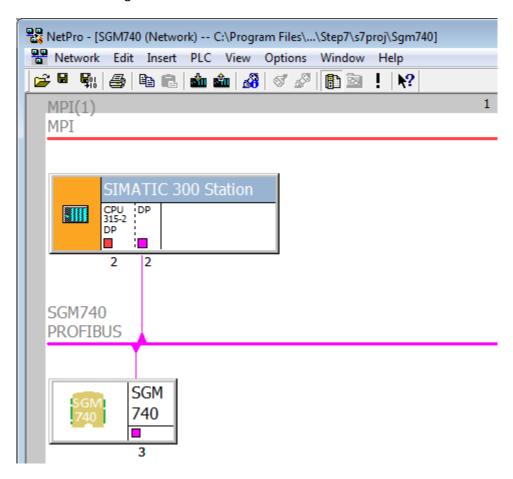


Select the node address and click on OK.

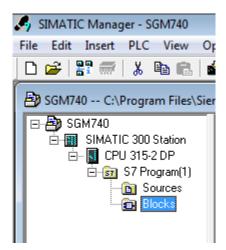


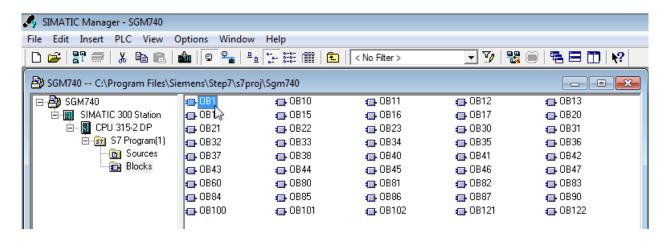

The downloading will start.

A pop-up will appear, click on **OK**.


The downloading will resume. When the downloading is completed, a pop-up will appear to restart the module. Click **Yes**.

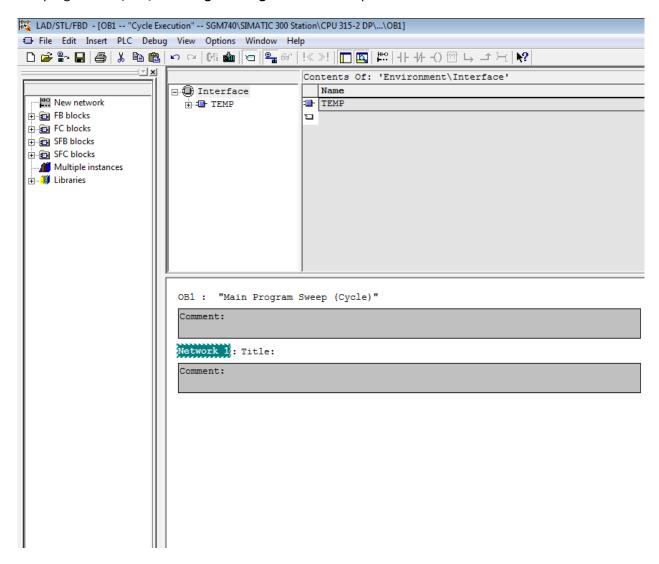
Close the **HW Config** program.


The Profibus configuration is shown in **NetPro**. Click on **Save** and close **NetPro**.



SIMATIC Manager (2)

Go back to SIMATIC Manager and click on **Blocks**.



Double click on block OB1.

The program LAD/STL/FBD-Programming S7 Blocks will open.

Click on the white surface below Comment to write a program.

OB1 : "Main Program Sweep (Cycle)"	
Comment:	
Network 1: Title:	
Comment:	

GSD file explanation

To make sense of the data, open the GSD file in **Notepad**. The start addresses of the SGM740 or SGM840 in- and outputs are needed to read or write the correct data from the SGM740 or SGM840.

Inputs

Note: the Start addresses are explained on page 19.

Note: In the examples below the start address of the SGM740 or SGM840 inputs is PI 256.

Siemens PLC's input addresses have a length of 1 byte, for example the weight register (double word) has a length of 4 bytes, so if the start address is PI 256, so the next data which is the status (word) will start at PI 260 (4 bytes further). The table below will show the addresses of all the inputs of the SGM740 or SGM840.

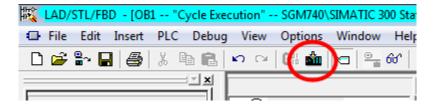
1 word equals 2 bytes.

1 Double word equals 4 bytes.

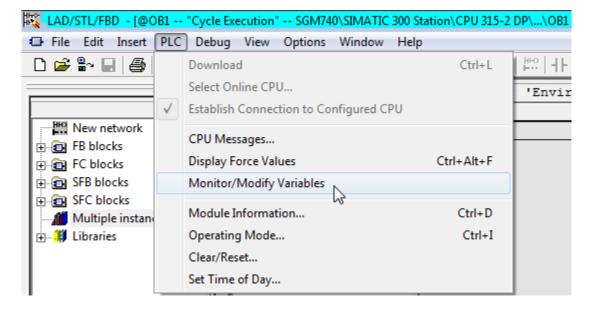
Address	Description
PID 256	Double word, Weight register
PIW 260	Word, Status
PIB 262	Byte, Command
PIB 263	Byte, Weight select register
PIW 264	Word, Inputs
PIW 266	Word, Outputs
PID 268	Double word, Preset tare
PID 272	Double word, Indicator gross x10
PID 276	Double word, Indicator net x10
PID 280	Double word, Indicator tare x10
PID 284	Double word, Indicator multirange weight

Read weight register

The first 2 words of the inputs are the weight register, the weight register will show at address PID 256

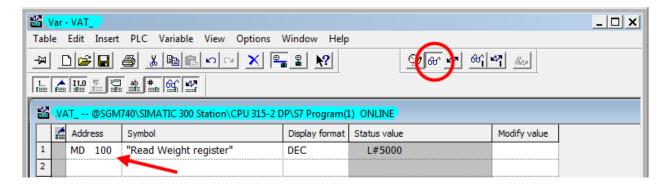

```
)092 Module = "SGM740" 0x6A, 0x5F
)093; Inputs: double word, 32 bit signed integer/float, weight register
                      word. 16 bit status
10094
0095 ;
                      byte, 8 bit command (if addressed as word high byte is command, low byte is select register)
                     byte. 8 bit weight select register
word, 16 inputs 1..16, iputs 4-16 are virtual inputs generated by software
word, 16 outputs 201..216, outputs 5-16 are virtual outputs generated by software
1097
0098
D100 ·
                double word, 32 bit signed integer, preset tare
0101 ;
                double word, 32 bit signed integer/float, indicator gross x10(same as weight select register 9)
                double word, 32 bit signed integer/float, indicator net x10(same as weight select register 10) double word, 32 bit signed integer/float, indicator tare x10(same as weight select register 13)
1)103 :
)104
                double word, 32 bit signed integer/float, multirange weight (same as weight select register 0)
```

To read out the weight register, write the following lines:

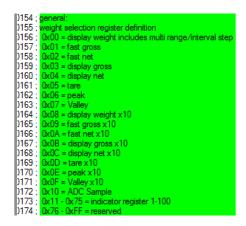

```
L PID 256
T "Read Weight register" MD100
```

The first line will load the weight output (double word) from the SGM740 or SGM840. The second line will copy the weight value (double word) in MD 100.

Click on **Download** to load the program into the PLC.

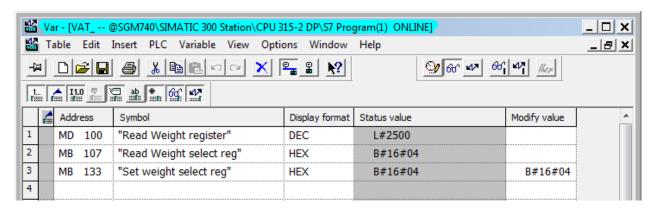


To view the live data, click on **PLC** and **Monitor/Modify Variables**.



Enter the address MD 100 and click on Monitor Variable. The live weight data is now shown.

Note: It's possible to choose any of the weight registers listed below, the chosen weight register will show at address PID 256 (weight register).



To read the selected weight register, please go to Read weight select register.

To select a weight register, please see Select a weight register.

In the example below "Display net" is chosen.

To choose "Display net", set 04 in MB 133 (weight select register). In MB 107 the chosen weight select register is shown. The Chosen value is shown in MD 100.

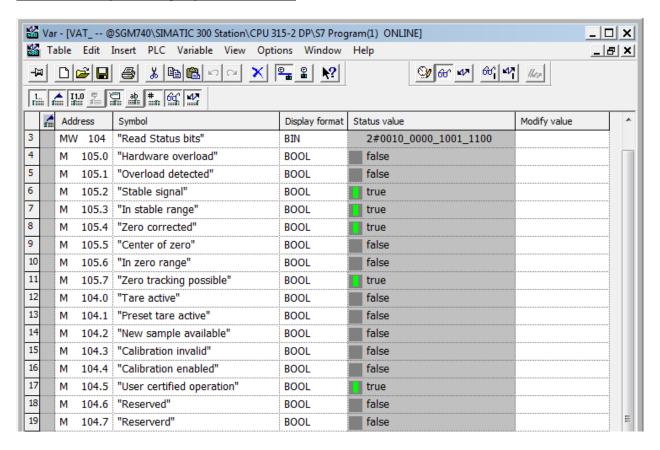
Read status

The status will show at address PIW 260, the following statuses can be read from the SGM740 or SGM840.

```
)092 Module = "SGM740" 0x6A, 0x5F
 1093; Inputs: double word, 32 bit signed integer/float, weight register
                   word, 16 bit status
 0095 ;
                  byte, 8 bit command (if addressed as word high byte is command, low byte is select register)
                  byte, 8 bit weight select register
                   word, 16 inputs 1..16, iputs 4-16 are virtual inputs generated by software
 10097
 h098 -
                  word, 16 outputs 201..216, outputs 5-16 are virtual outputs generated by software
 0099 ;
 )100;
              double word, 32 bit signed integer, preset tare
)101 ;
)102 ;
              double word, 32 bit signed integer/float, indicator gross \times 10(same as weight select register 9) double word, 32 bit signed integer/float, indicator net \times 10(same as weight select register 10)
 )103;
)104 ;
)105 ;
              double word, 32 bit signed integer/float, indicator tare x10(same as weight select register 13)
              double word, 32 bit signed integer/float, multirange weight (same as weight select register 0)
 )106
 )107; Outputs:
                      byte, 8 bit command (if addressed as word high byte is command, low byte is select register)
 1)108 :
                  byte, 8 bit weight select register
 )109 ;
 )110;
              double word, 32 bit signed integer, preset tare. Setup this register and at rising edge of command bit 5 preset tare is activated.
 )111;
              double word, 32 bit signed integer, level 1
 1)112 :
 )113 ;
              double word, 32 bit signed integer, level 2
 )114;
              double word, 32 bit signed integer, level 3
 1)115 :
              double word, 32 bit signed integer, level 4
 )116
)128 ; 11 = new sample available
)129 : 12 = calibration invalid
)130 : 13 = calibration enabled
 )131; 14 = user certified operation
)132 ; 15 = reserved
)133 ; 16 = reserved
```

To read out the status, write the following lines:

```
L PIW 260 //Load Status
T "Read Status bits" //Store Status MW104
```


The first line will load the status (word) from the SGM740 or SGM840. The second line will copy the status (word) in MW 104.

Connect a SGM740 or SGM840 to a Siemens PLC

In the example below the "Stable Signal", In Stable Range", Zero corrected, Zero Tracking Possible" and "User Certified operation" are on.

Note: The low byte and high byte are switched.

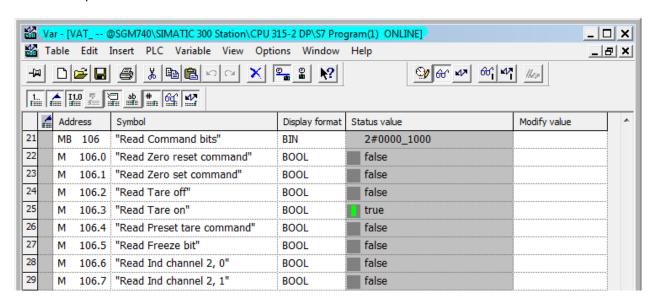
Read commands

The commands will show at address PIB 262(high byte).

```
)092 Module = "SGM740" 0x6A, 0x5F
1093; Inputs: double word, 32 bit signed integer/float, weight register
                  word, 16 bit status
1094
D095
                 byte, 8 bit command (if addressed as word high byte is command, low byte is select register) byte, 8 bit weight select register
0096
)097
                  word, 16 inputs 1..16, iputs 4-16 are virtual inputs generated by software
10098
                 word, 16 outputs 201...216, outputs 5-16 are virtual outputs generated by software
0099
)100;
             double word, 32 bit signed integer, preset tare
)101;
1)102 :
             double word, 32 bit signed integer/float, indicator gross x10(same as weight select register 9)
)103;
             double word, 32 bit signed integer/float, indicator net x10(same as weight select register 10)
)104
             double word, 32 bit signed integer/float, indicator tare x10(same as weight select register 13)
1)105 :
             double word, 32 bit signed integer/float, multirange weight (same as weight select register 0)
)106
)107 ; Outputs:
                    byte, 8 bit command (if addressed as word high byte is command, low byte is select register)
)108;
                 byte, 8 bit weight select register
(109 :
)110 ;
             double word, 32 bit signed integer, preset tare. Setup this register and at rising edge of command bit 5 preset tare is activated.
)112 ;
)113 ;
             double word, 32 bit signed integer, level 1
             double word, 32 bit signed integer, level 2
             double word, 32 bit signed integer, level 3
1115
             double word, 32 bit signed integer, level 4
```

The following commands can be read from the SGM740 or SGM840.

```
1135; command bit definition
)136; 1 = zero reset command
)137; 2 = zero set command
)138; 3 = tare off
1139: 4 = tare on
1140 : 5 = preset tare command
 1141; 6 = freeze bit, freeze weigher registers at rising edge for selected weigher, if bit is 0 registers will be updated
 1142; use this bit to read out all necessary weigher registers without any interruption of the weigher, example:
 )143;
 1144:
           read net
 1145:
           read tare
 )146;
           read net x10
1147; reset bit 6
1148; 7 = indicator channel 2^0, channel is a helper register to select a wider range of registers. Reserved for the SGM and should be set to 0
1148; 7 = indicator channel 2^0, channel is a helper register to select a wider range of registers. Reserved for the SGM and should be set to 0
)149; 8 = indicator channel 2^1, channel is a helper register to select a wider range of registers. Reserved for the SGM and should be set to 0
```


To read out the commands, write the following lines:

```
L PIB 262 //Load Command bits and weight select register
T "Read Command bits" //Store Command bits and weight select register
MB106
```

The first line will load the commands (high byte) from the SGM740 or SGM840. The second line will copy the commands (byte) in MB 106.

In the example below the "Tare on" command is on.

To set the commands, please see <u>Set commands</u> for instructions.

Read weight select register

The weight select register will show at address PIB 263 (low byte).

```
)092 Module = "SGM740" 0x6A, 0x5F
1093 ; Inputs : double word, 32 bit signed integer/float, weight register
1094 ; word, 16 bit status
                  byte, 8 bit command (if addressed as word high byte is command, low byte is select register)
                  byte. 8 bit weight select register
word, 16 inputs 1..16, iputs 4-16 are virtual inputs generated by software
1096
1097
1098
                  word, 16 outputs 201...216, outputs 5-16 are virtual outputs generated by software
1)100
             double word, 32 bit signed integer, preset tare
0101
)102
)103
             double word, 32 bit signed integer/float, indicator gross x10(same as weight select register 9)
             double word, 32 bit signed integer/float, indicator net x10(same as weight select register 10)
)104
)105
             double word, 32 bit signed integer/float, indicator tare x10(same as weight select register 13)
             double word, 32 bit signed integer/float, multirange weight(same as weight select register 0)
)107 ; Outputs:
                     byte, 8 bit command (if addressed as word high byte is command, low byte is select register)
                  byte, 8 bit weight select register
)109
)110
             double word, 32 bit signed integer, preset tare. Setup this register and at rising edge of command bit 5 preset tare is activated
)111
             double word, 32 bit signed integer, level 1
1112
             double word, 32 bit signed integer, level 2
             double word, 32 bit signed integer, level 3
1)114:
             double word, 32 bit signed integer, level 4
0116
```

The following weight select registers can be read from the SGM740 or SGM840.

```
| 1154 | general: | |
| 1155 | weight selection register definition |
| 1156 | 0x00 = display weight includes multi range/interval step |
| 1157 | 0x01 = fast gross |
| 1158 | 0x02 = fast net |
| 1159 | 0x03 = display gross |
| 1160 | 0x04 = display net |
| 1161 | 0x05 = tare |
| 1162 | 0x06 = peak |
| 1163 | 0x07 = Valley |
| 1164 | 0x08 = display weight x10 |
| 1155 | 0x09 = fast gross x10 |
| 1166 | 0x0A = fast net x10 |
| 1167 | 0x0B = display gross x10 |
| 1168 | 0x0C = display net x10 |
| 1169 | 0x0D = tare x10 |
| 1170 | 0x0E = peak x10 |
| 1171 | 0x0F = Valley x10 |
| 1172 | 0x10 = ADC Sample |
| 1173 | 0x11 = 0x75 = indicator register 1-100 |
| 1174 | 0x76 = 0xFF = reserved |
| 1175 | 0x76 = 0xFF = reserved |
| 1175 | 0x10 = ADC Sample |
| 1174 | 0x75 = 0xFF = reserved |
| 1175 | 0x76 = 0xFF = reserved |
| 1176 | 0x76 = 0xFF = reserved |
| 1176 | 0x76 = 0xFF = reserved |
| 1177 | 0x76 = 0xFF = reserved |
| 1178 | 0x76 = 0xFF = reserved |
| 1179 | 0x76 = 0xFF = reserved |
| 1179 | 0x76 = 0xFF = reserved |
| 1170 | 0x76 = 0xFF = reserved |
| 1170 | 0x76 = 0xFF = reserved |
| 1170 | 1170 | 1170 |
| 1171 | 1170 | 1170 |
| 1171 | 1170 | 1170 |
| 1171 | 1170 |
| 1171 | 1170 |
| 1171 | 1170 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171 |
| 1171
```

To read out the weight select register, write the following lines:

```
L PIB 263 //Load Weight select register
T "Read Weight select reg" //Store Weight select register MB107
```

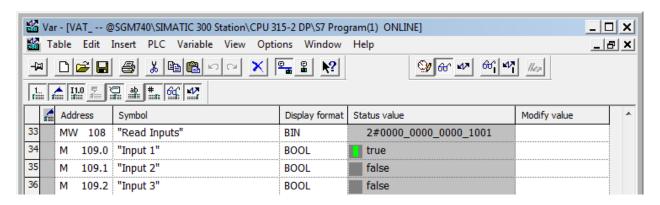
The first line will load the weight select register (Low byte) from the SGM740 or SGM840. The second line will copy the weight select register (byte) in MB 107.

In the example below weight register "Display Net" is chosen.

To set the weight select register, please see Set weight select register for instructions.

Read inputs

The 3 inputs of the SGM740 or SGM840 will show at address PIW 264.


```
)092 Module = "SGM740" 0x6A, 0x5F
1093; Inputs: double word, 32 bit signed integer/float, weight register
1094
                  word, 16 bit status
                 byte, 8 bit command (if addressed as word high byte is command, low byte is select register)
0095
                 byte, 8 bit weight select register
word, 16 inputs 1..16, iputs 4-16 are virtual inputs generated by software
0096
)097
10098
                 word, 16 outputs 201...216, outputs 5-16 are virtual outputs generated by software
0099
)100;
             double word, 32 bit signed integer, preset tare
)101;
1)102 :
             double word, 32 bit signed integer/float, indicator gross x10(same as weight select register 9)
)103 ;
             double word, 32 bit signed integer/float, indicator net x10(same as weight select register 10)
)104;
             double word, 32 bit signed integer/float, indicator tare x10(same as weight select register 13)
1)105 :
             double word, 32 bit signed integer/float, multirange weight (same as weight select register 0)
)106
)107 ; Outputs:
                     byte, 8 bit command (if addressed as word high byte is command, low byte is select register)
)108;
                 byte, 8 bit weight select register
)109 ;
)110 ;
             double word, 32 bit signed integer, preset tare. Setup this register and at rising edge of command bit 5 preset tare is activated.
)112;
             double word, 32 bit signed integer, level 1
             double word, 32 bit signed integer, level 2
double word, 32 bit signed integer, level 3
)113
)115;
             double word, 32 bit signed integer, level 4
```

To read out the inputs, write the following lines:

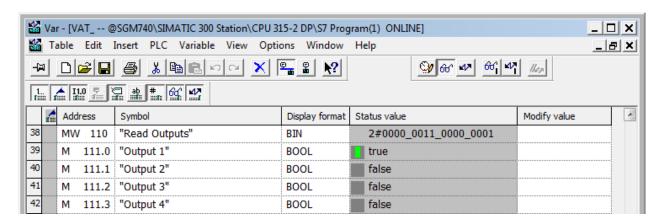
```
L PIW 264 //Load inputs
T "Read Inputs" //Store inputs MW108
```

The first line will load the inputs (word) from the SGM740 or SGM840. The second line will copy the inputs (word) in MW 108.

In the Example below input 1 is on.

Read outputs

The 4 outputs of the SGM740 or SGM840 will show at address PIW 266.


```
)092 Module = "SGM740" 0x6A, 0x5F
1093; Inputs: double word, 32 bit signed integer/float, weight register
1094
                  word, 16 bit status
                 byte, 8 bit command (if addressed as word high byte is command, low byte is select register) byte, 8 bit weight select register
0095
1096
)097
                                    1..16, iputs 4-16 are virtual inputs generated by software
10098
                 word, 16 outputs 201..216, outputs 5-16 are virtual outputs generated by software
0099
)100;
             double word, 32 bit signed integer, preset tare
)101;
1)102 :
             double word, 32 bit signed integer/float, indicator gross x10(same as weight select register 9)
)103 ;
             double word, 32 bit signed integer/float, indicator net x10(same as weight select register 10)
)104
             double word, 32 bit signed integer/float, indicator tare x10(same as weight select register 13)
1)105 :
             double word, 32 bit signed integer/float, multirange weight (same as weight select register 0)
)106
)107 ; Outputs:
                     byte, 8 bit command (if addressed as word high byte is command, low byte is select register)
)108;
                 byte, 8 bit weight select register
|)109 ·
)110 ;
             double word, 32 bit signed integer, preset tare. Setup this register and at rising edge of command bit 5 preset tare is activated.
)112;
             double word, 32 bit signed integer, level 1
)113
             double word, 32 bit signed integer, level 2 double word, 32 bit signed integer, level 3
)115 :
             double word, 32 bit signed integer, level 4
```

To read out the outputs, write the following lines:

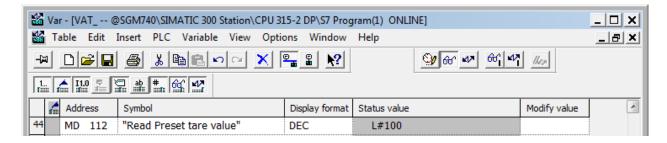
```
L PIW 266 //Load outputs
T "Read Outputs" //Store outputs MW110
```

The first line will load the outputs (word) from the SGM740 or SGM840. The second line will copy the outputs (word) in MW 110.

In the example below output 1 is on.

Read preset Tare

The Preset Tare value will show at address PID 268.


```
)092 Module = "SGM740" 0x6A, 0x5F
1093; Inputs: double word, 32 bit signed integer/float, weight register
1094
                 word, 16 bit status
                 byte, 8 bit command (if addressed as word high byte is command, low byte is select register) byte, 8 bit weight select register
0095
1096
)097
                 word, 16 inputs 1..16, iputs 4-16 are virtual inputs generated by software
10098
                 word, 16 outputs 201...216, outputs 5-16 are virtual outputs generated by software
0099
)100;
             double word, 32 bit signed integer, preset tare
)101;
1)102 :
            double word, 32 bit signed integer/float, indicator gross x10(same as weight select register 9)
)103 ;
            double word, 32 bit signed integer/float, indicator net x10(same as weight select register 10)
)104
             double word, 32 bit signed integer/float, indicator tare x10(same as weight select register 13)
1)105 :
             double word, 32 bit signed integer/float, multirange weight (same as weight select register 0)
)106
)107 ; Outputs:
                    byte, 8 bit command (if addressed as word high byte is command, low byte is select register)
)108;
                 byte, 8 bit weight select register
)109 ;
)110 ;
            double word, 32 bit signed integer, preset tare. Setup this register and at rising edge of command bit 5 preset tare is activated.
)112 ;
             double word, 32 bit signed integer, level 1
)113
            double word, 32 bit signed integer, level 2
             double word, 32 bit signed integer, level 3
)115 :
             double word, 32 bit signed integer, level 4
```

To read out the preset tare, write the following lines:

```
L PID 268 //Load preset tare value
T "Read Preset tare value" //Store preset tare value MD112
```

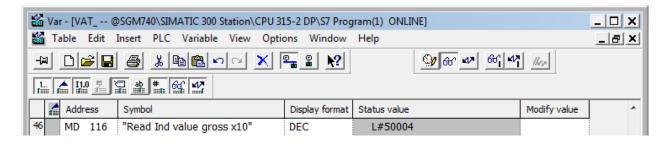
The first line will load the preset tare (double word) from the SGM740 or SGM840. The second line will copy the preset tare (double word) in MD 112.

In the example below the Preset Tare value is 100.

To set the preset tare, please see Set preset tare for instructions.

Read indicator gross x 10

The indicator gross x 10 value will show at address PID 272.


```
0092 Module = "SGM740" 0x6A, 0x5F
1093; Inputs: double word, 32 bit signed integer/float, weight register
1094
                  word, 16 bit status
                 byte, 8 bit command (if addressed as word high byte is command, low byte is select register) byte, 8 bit weight select register
0095
1096
0097
                  word, 16 inputs 1..16, iputs 4-16 are virtual inputs generated by software
10098
                 word, 16 outputs 201...216, outputs 5-16 are virtual outputs generated by software
0099
)100;
             double word, 32 bit signed integer, preset tare
)101;
             double word, 32 bit signed integer/float, indicator gross x10(same as weight select register 9)
1102
)103 ;
             double word, 32 bit signed integer/float, indicator net x10(same as weight select register 10)
)104
             double word, 32 bit signed integer/float, indicator tare x10(same as weight select register 13)
1)105 :
             double word, 32 bit signed integer/float, multirange weight (same as weight select register 0)
)106
)107 ; Outputs:
                    byte, 8 bit command (if addressed as word high byte is command, low byte is select register)
)108;
                 byte, 8 bit weight select register
D109 :
)110 ;
             double word, 32 bit signed integer, preset tare. Setup this register and at rising edge of command bit 5 preset tare is activated.
)112 ;
)113 ;
             double word, 32 bit signed integer, level 1
             double word, 32 bit signed integer, level 2
             double word, 32 bit signed integer, level 3
1115 :
             double word, 32 bit signed integer, level 4
D116 :
```

To read out the indicator gross x10, write the following lines:

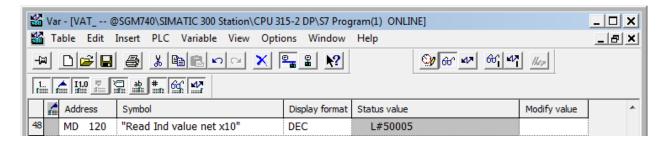
```
L PID 272 //Load indicator value gross x10
T "Read Ind value gross x10" //Store indicator value gross x10 MD116
```

The first line will load the indicator gross x10 (double word) from the SGM740 or SGM840. The second line will copy the indicator gross x10 (double word) in MD 116.

In the example below the gross x 10 value is 50004.

Read indicator net x 10

The indicator net x 10 value will show at address PID 276.


```
0092 Module = "SGM740" 0x6A, 0x5F
1093; Inputs: double word, 32 bit signed integer/float, weight register
1094
                 word, 16 bit status
                 byte, 8 bit command (if addressed as word high byte is command, low byte is select register) byte, 8 bit weight select register
D095
1096
0097
                 word, 16 inputs 1..16, iputs 4-16 are virtual inputs generated by software
10098
                 word, 16 outputs 201...216, outputs 5-16 are virtual outputs generated by software
0099
)100;
            double word, 32 bit signed integer, preset tare
)101;
1)102 :
            double word, 32 bit signed integer/float, indicator gross x10(same as weight select register 9)
)103 ;
             double word, 32 bit signed integer/float, indicator net x10(same as weight select register 10)
)104
             double word, 32 bit signed integer/float, indicator tare x10(same as weight select register 13)
1)105 :
             double word, 32 bit signed integer/float, multirange weight (same as weight select register 0)
)106
)107 ; Outputs:
                    byte, 8 bit command (if addressed as word high byte is command, low byte is select register)
)108;
                 byte, 8 bit weight select register
D109 :
)110 ;
            double word, 32 bit signed integer, preset tare. Setup this register and at rising edge of command bit 5 preset tare is activated.
1)112 :
             double word, 32 bit signed integer, level 1
)113
            double word, 32 bit signed integer, level 2
             double word, 32 bit signed integer, level 3
)115 :
             double word, 32 bit signed integer, level 4
```

To read out the indicator net x10, write the following lines:

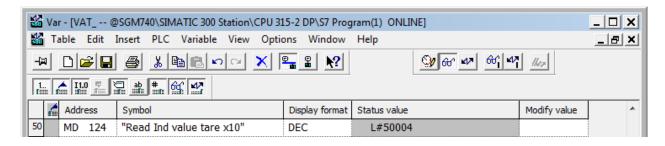
```
L PID 276 //Load indicator value net x10
T "Read Ind value net x10" //Store indicator value net x10 MD120
```

The first line will load the indicator net x10 (double word) from the SGM740 or SGM840. The second line will copy the indicator net x10 (double word) in MD 120.

In the example below the net x 10 value is 50005.

Read indicator tare x 10

The indicator tare x 10 value will show at address PID 280.


```
0092 Module = "SGM740" 0x6A, 0x5F
1093; Inputs: double word, 32 bit signed integer/float, weight register
1094
                   word, 16 bit status
                  byte, 8 bit command (if addressed as word high byte is command, low byte is select register) byte, 8 bit weight select register
D095
1096
0097
                                     1..16, iputs 4-16 are virtual inputs generated by software
10098
                  word, 16 outputs 201...216, outputs 5-16 are virtual outputs generated by software
0099
)100;
             double word, 32 bit signed integer, preset tare
)101;
1102
             double word, 32 bit signed integer/float, indicator gross x10(same as weight select register 9)
             double word, 32 bit signed integer/float, indicator net x10(same as weight select register 10) double word, 32 bit signed integer/float, indicator tare x10(same as weight select register 13)
)103 ;
)104
1)105 :
              double word, 32 bit signed integer/float, multirange weight (same as weight select register 0)
)106
)107 ; Outputs:
                      byte, 8 bit command (if addressed as word high byte is command, low byte is select register)
)108;
                  byte, 8 bit weight select register
D109 :
)110 ;
             double word, 32 bit signed integer, preset tare. Setup this register and at rising edge of command bit 5 preset tare is activated.
1)112 :
              double word, 32 bit signed integer, level 1
)113
             double word, 32 bit signed integer, level 2
              double word, 32 bit signed integer, level 3
1)115 :
              double word, 32 bit signed integer, level 4
```

To read out the indicator tare x10, write the following lines:

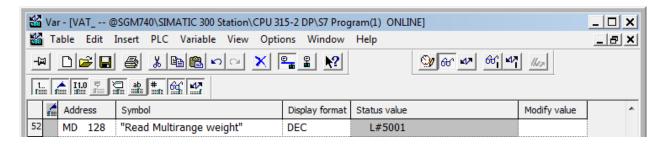
```
L PID 280 //Load indicator value tare x10
T "Read Ind value tare x10" //Store indicator value tare x10 MD124
```

The first line will load the indicator tare x10 (double word) from the SGM740 or SGM840. The second line will copy the indicator tare x10 (double word) in MD 124.

In the example below the tare x 10 value is 50004.

Read multirange weight

The indicator multirange weight value will show at address PID 284.


```
)092 Module = "SGM740" 0x6A, 0x5F
1093; Inputs: double word, 32 bit signed integer/float, weight register
1094
                 word, 16 bit status
                 byte, 8 bit command (if addressed as word high byte is command, low byte is select register) byte, 8 bit weight select register
D095
1096
)097
                                   1..16, iputs 4-16 are virtual inputs generated by software
10098
                 word, 16 outputs 201...216, outputs 5-16 are virtual outputs generated by software
0099
)100;
             double word, 32 bit signed integer, preset tare
)101;
1)102 :
            double word, 32 bit signed integer/float, indicator gross x10(same as weight select register 9)
)103 ;
            double word, 32 bit signed integer/float, indicator net x10(same as weight select register 10)
)104
             double word, 32 bit signed integer/float, indicator tare x10(same as weight select register 13)
1)105 :
             double word, 32 bit signed integer/float, multirange weight (same as weight select register 0)
)106
)107 ; Outputs:
                    byte, 8 bit command (if addressed as word high byte is command, low byte is select register)
)108;
                 byte, 8 bit weight select register
)109 ;
)110 ;
            double word, 32 bit signed integer, preset tare. Setup this register and at rising edge of command bit 5 preset tare is activated.
)112;
             double word, 32 bit signed integer, level 1
)113
            double word, 32 bit signed integer, level 2
             double word, 32 bit signed integer, level 3
1)115 :
             double word, 32 bit signed integer, level 4
```

To read out the multirange weight, write the following lines:

```
L PID 284 //Load indicator value multirange weight
T "Read Multirange weight" //Store indicator value multirange weight MD128
```

The first line will load the multirange weight (double word) from the SGM740 or SGM840. The second line will copy the multirange weight (double word) in MD 128.

In the example below the multirange weight value is 50001.

Outputs

Note: the Start addresses are explained on page 19.

Note: In the examples below the start address of the SGM740 or SGM840 inputs is PQ 256.

```
byte, 8 bit command (if addressed as word high byte is command, low byte is select register)

double word, 32 bit signed integer, preset tare. Setup this register and at rising edge of command bit 5 preset tare is activated.

double word, 32 bit signed integer, level 1
double word, 32 bit signed integer, level 2
double word, 32 bit signed integer, level 3
double word, 32 bit signed integer, level 3
double word, 32 bit signed integer, level 4
```

Siemens PLC's output addresses have a length of 1 byte, for example the command (byte) has a length of 1 byte, so if the start address is PQ 256, so the next data which is the Weight (word) will start at PQ 257 (1 byte further. The table below will show the addresses of all the outputs of the SGM740 or SGM840.

1 word equals 2 bytes

1 Double word equals 4 bytes

Address	Description
PQB 256	Byte, Command
PQB 257	Byte, Weight select register
PQD 258	Double word, Preset tare
PQD 262	Double word, Level 1
PQD 266	Double word, Level 2
PQD 270	Double word, Level 3
PQD 274	Double word, Level 4

Set commands

The commands will start at address PQB 256 (high byte).

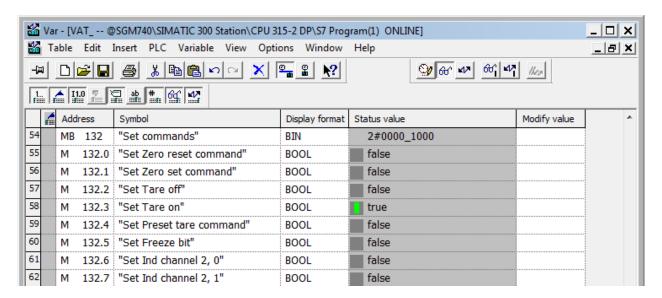
```
)092 Module = "SGM740" 0x6A, 0x5F
1093; Inputs: double word, 32 bit signed integer/float, weight register
1094
                  word, 16 bit status
                 byte, 8 bit command (if addressed as word high byte is command, low byte is select register) byte, 8 bit weight select register
D095
)096
)097
                  word, 16 inputs 1..16, iputs 4-16 are virtual inputs generated by software
10098
                 word, 16 outputs 201...216, outputs 5-16 are virtual outputs generated by software
0099
)100;
             double word, 32 bit signed integer, preset tare
)101;
1102
             double word, 32 bit signed integer/float, indicator gross x10(same as weight select register 9)
)103;
             double word, 32 bit signed integer/float, indicator net x10(same as weight select register 10)
)104
             double word, 32 bit signed integer/float, indicator tare x10(same as weight select register 13)
1)105 :
             double word, 32 bit signed integer/float, multirange weight (same as weight select register 0)
)106
)107 ; Outputs:
                    byte, 8 bit command (if addressed as word high byte is command, low byte is select register)
)108;
                 byte, 8 bit weight select register
109
)110 ;
             double word, 32 bit signed integer, preset tare. Setup this register and at rising edge of command bit 5 preset tare is activated.
)112 ;
)113 ;
             double word, 32 bit signed integer, level 1
             double word, 32 bit signed integer, level 2
             double word, 32 bit signed integer, level 3
1)115 :
             double word, 32 bit signed integer, level 4
D116
```

The following commands can be used.

```
1135 : command bit definition
1136 : 1 = zero reset command
1137 : 2 = zero set command
1138 : 3 = tare off
1139 : 4 = tare on
1140 : 5 = preset tare command
1141 : 6 = freeze bit, freeze weigher registers at rising edge for selected weigher, if bit is 0 registers will be updated
1142 : use this bit to read out all necessary weigher registers without any interruption of the weigher, example:
1143 : set bit 6
1144 : read net
1145 : read tare
1146 : read tare
1146 : read tare
1147 : reset bit 6
1147 : reset bit 6
1148 : 7 = indicator channel 2^0, channel is a helper register to select a wider range of registers. Reserved for the SGM and should be set to 0
1149 : 8 = indicator channel 2^1, channel is a helper register to select a wider range of registers. Reserved for the SGM and should be set to 0
```

To set the commands, write the following lines:

```
//Send commands, weight select register, preset tare and levels for the PLC to the SGM 740 or SGM840 Weight


L "Set commands" //Load Command

T PQB 256 //Store Command
```

The first line will load the commands (byte) from MB 132. The second line will copy the commands (byte) into the SGM740 or SGM840.

In the example below the command "Tare On" is given to the SGM740 or SGM840.

To check if the SGM740 or SGM840 has executed the command, it's possible to read out the commands. Please see Read commands for instructions.

Set weight select register

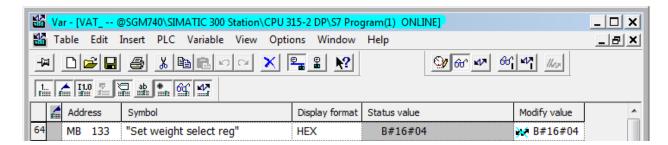
The weight select register will start at address PQB 257(low byte).

```
)092 Module = "SGM740" 0x6A, 0x5F
1093; Inputs: double word, 32 bit signed integer/float, weight register
                 word, 16 bit status
                 byte, 8 bit command (if addressed as word high byte is command, low byte is select register) byte, 8 bit weight select register
D095
0096
1097
                 word, 16 inputs 1..16, iputs 4-16 are virtual inputs generated by software
10098 -
                 word, 16 outputs 201...216, outputs 5-16 are virtual outputs generated by software
0099
)100;
             double word, 32 bit signed integer, preset tare
)101;
1)102 :
             double word, 32 bit signed integer/float, indicator gross x10(same as weight select register 9)
)103;
             double word, 32 bit signed integer/float, indicator net x10(same as weight select register 10)
)104
             double word, 32 bit signed integer/float, indicator tare x10(same as weight select register 13)
1)105 :
             double word, 32 bit signed integer/float, multirange weight (same as weight select register 0)
)106
)107 ; Outputs:
                    byte, 8 bit command (if addressed as word high byte is command, low byte is select register)
)108;
(109 :
)110 ;
             double word, 32 bit signed integer, preset tare. Setup this register and at rising edge of command bit 5 preset tare is activated.
)112 ;
)113 ;
             double word, 32 bit signed integer, level 1
             double word, 32 bit signed integer, level 2
             double word, 32 bit signed integer, level 3
1)115 :
             double word, 32 bit signed integer, level 4
```

The following weight registers can be selected.

```
)154 ; general
)155; weight selection register definition
)156 ; 0x00 = display weight includes multi range/interval step
)157 ; 0x01 = fast gross
)158; 0x02 = fast net
)159 ; 0x03 = display gross
)160 ; 0x04 = display net
)161; 0x05 = tare
)162 ; 0x06 = peak
)163 ; 0x07 = Valley
)164 ; 0x08 = display weight x10
)165; 0x09 = fast gross x10
)166; 0x0A = fast net x10
)167 ; 0x0B = display gross x10
)168 ; 0x0C = display net x10
)169 ; 0x0D = tare x10
)170 ; 0x0E = peak x10
)171; 0x0F = Valley x10
)172 ; 0x10 = ADC Sample
)173; 0x11 - 0x75 = indicator register 1-100
)174 : 0x76 - 0xFF = reserved
```

To set the weight select register, write the following lines:


```
L "Set weight select reg" //Load weight select register
T PQB 257 //Store weight select register
```

The first line will load the weight select register (byte) from MB133. The second line will copy the weight select register (byte) into the SGM740 or SGM840.

Connect a SGM740 or SGM840 to a Siemens PLC

In the example below weight register "Display Net" is chosen. The Display Net weight will now be shown in MD 100.

To check if the SGM740 or SGM840 has executed the weight select register, it's possible to read out the weight select register. Please see <u>Read weight select register</u> for instructions.

Set preset tare

The preset tare can be set at address PQD 258.

Note: to change the value of the preset tare, command bit 5 (preset tare command) must be set. The address will be M 132.4.

```
)092 Module = "SGM740" 0x6A, 0x5F
| 1093; Inputs: double word, 32 bit signed integer/float, weight register
0094
                   word, 16 bit status
                   byte, 8 bit command (if addressed as word high byte is command, low byte is select register)
10096
                   byte, 8 bit weight select register
word, 16 inputs 1..16, iputs 4-16 are virtual inputs generated by software
10097
                   word, 16 outputs 201..216, outputs 5-16 are virtual outputs generated by software
0098;
)099 ;
)100 :
              double word, 32 bit signed integer, preset tare
)101
)102
              double word, 32 bit signed integer/float, indicator gross x10(same as weight select register 9)
              double word, 32 bit signed integer/float, indicator net x10(same as weight select register 10) double word, 32 bit signed integer/float, indicator tare x10(same as weight select register 13)
)103 ;
)104 ;
)105
              double word, 32 bit signed integer/float, multirange weight (same as weight select register 0)
)106
)107 ; Outputs:
                      byte, 8 bit command (if addressed as word high byte is command, low byte is select register)
)108
                   byte. 8 bit weight select register
)109
)110 ;
)111 ;
              double word, 32 bit signed integer, preset tare. Setup this register and at rising edge of command bit 5 preset tare is activated.
)112;
              double word, 32 bit signed integer, level 1
)113 ;
              double word, 32 bit signed integer, level 2
D114 ·
              double word, 32 bit signed integer, level 3
1115
              double word, 32 bit signed integer, level 4
```

To set the preset tare, write the following lines:

```
L "Set preset tare" //Load Preset tare value To set a new preset tare value, command "Preset tare" must be set high (M132.4) MD134
T PQD 258 //Store Preset tare value
```

The first line will load the preset tare (double word) from MD 134. The second line will copy the preset tare (double word) into the SGM740 or SGM840. Even if the new preset tare is stored in the SGM740 or SGM840, the old preset tare is used until command bit 5 is set high.

Use the following program to automatically change the preset tare if a new value is set in MD 134.

```
L "Set preset tare" //Load set preset tare value To set a new preset tare value, command "Preset tare" must be set high (M132.4)

MD134

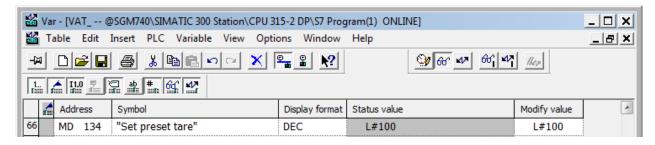
T PQD 258 //Store set preset tare value

L "Read Preset tare value" //Load current preset tare value

L "Set preset tare" //Load set preset tare

->D //Load set preset tare

//Load set preset tare value


//Load set preset tare value

//Load set preset tare

//Load set preset tare value

//Load
```

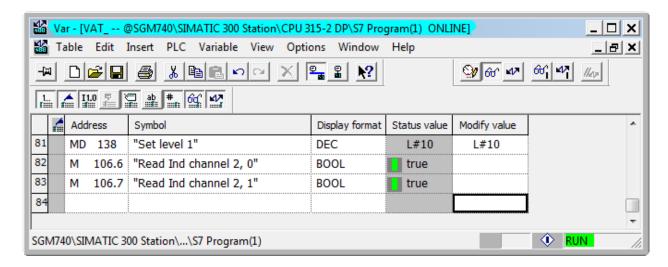
In the example below the preset tare value is set, the value (100) will be shown in MD 134.

To check if the SGM740 or SGM840 has executed the preset tare value, it's possible to read out the preset tare. Please see Read preset tare for instructions.

Set level 1

The Setpoint for level 1 can be set at address PQD 262.

Note: to change the value of level 1, command bit 7 and 8 (indicator channel 2,0 and 2,1) must be set. The addresses will be M 132.6 and M 132.7.


```
)092 Module = "SGM740" 0x6A, 0x5F
)093; Inputs: double word, 32 bit signed integer/float, weight register
0094
                    word, 16 bit status
                    byte, 8 bit command (if addressed as word high byte is command, low byte is select register)
10096
                    byte, 8 bit weight select register
word, 16 inputs 1..16, iputs 4-16 are virtual inputs generated by software
1097
                    word, 16 outputs 201..216, outputs 5-16 are virtual outputs generated by software
0098;
)099 ;
)100 :
               double word, 32 bit signed integer, preset tare
)101 :
)102
               double word, 32 bit signed integer/float, indicator gross x10(same as weight select register 9)
               double word, 32 bit signed integer/float, indicator net x10(same as weight select register 10) double word, 32 bit signed integer/float, indicator tare x10(same as weight select register 13) double word, 32 bit signed integer/float, multirange weight(same as weight select register 0)
)103 ;
)104 ;
)105
)106
)107 ; Outputs:
                        byte, 8 bit command (if addressed as word high byte is command, low byte is select register)
)108
                    byte. 8 bit weight select register
)109
)110 ;
)111 ;
               double word, 32 bit signed integer, preset tare. Setup this register and at rising edge of command bit 5 preset tare is activated.
)112;
               double word, 32 bit signed integer, level 1
)113;
               double word, 32 bit signed integer, level 2
D114 ·
               double word, 32 bit signed integer, level 3
               double word, 32 bit signed integer, level 4
0115
```

To set level 1, write the following lines:

```
L "Set level 1" //Load Value level 1 To set a new setpoint level, command "indicator channel 2,0 and 2,1 must be set high (132.6 and 132.7) MD138
T PQD 262 //Store value level 1
```

The first line will load level 1 (double word) from MD 138. The second line will copy level 1 (double word) into the SGM740 or SGM840.

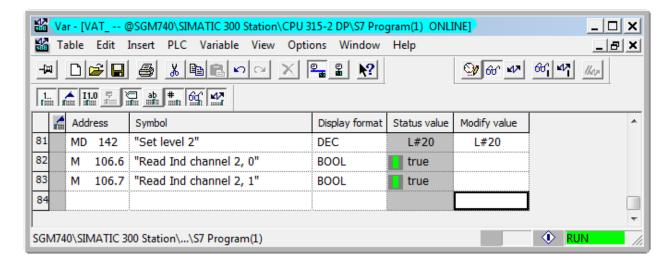
In the example below level 1 is set, the value (10) will be shown in MD 138.

Connect a SGM740 or SGM840 to a Siemens PLC

Set level 2

The Setpoint for level 2 can be set at address PQD 266.

Note: to change the value of level 2, command bit 7 and 8 (indicator channel 2,0 and 2,1) must be set. The addresses will be M 132.6 and M 132.7.


```
)092 Module = "SGM740" 0x6A, 0x5F
)093; Inputs: double word, 32 bit signed integer/float, weight register
)094
                     word, 16 bit status
                      byte, 8 bit command (if addressed as word high byte is command, low byte is select register)
0096
0097
                     byte, 8 bit weight select register
word, 16 inputs 1..16, iputs 4-16 are virtual inputs generated by software
                     word, 16 outputs 201..216, outputs 5-16 are virtual outputs generated by software
0098;
)099 ;
)100 :
                double word, 32 bit signed integer, preset tare
)101 :
)102
                double word, 32 bit signed integer/float, indicator gross x10(same as weight select register 9)
               double word, 32 bit signed integer/float, indicator net x10(same as weight select register 10) double word, 32 bit signed integer/float, indicator tare x10(same as weight select register 13) double word, 32 bit signed integer/float, multirange weight(same as weight select register 0)
)103 ;
)104 ;
)105
)106
)107; Outputs:
                         byte, 8 bit command (if addressed as word high byte is command, low byte is select register)
)108 :
                     byte. 8 bit weight select register
)109
)110 ;
)111 ;
                double word, 32 bit signed integer, preset tare. Setup this register and at rising edge of command bit 5 preset tare is activated.
)112;
                double word, 32 bit signed integer, level 1
)113 ;
               double word, 32 bit signed integer, level 2 double word, 32 bit signed integer, level 3
D114 ·
                double word, 32 bit signed integer, level 4
0115
```

To set level 2, write the following lines:

```
L "Set level 2" //Load Value level 2 To set a new setpoint level, command "indicator channel 2,0 and 2,1 must be set high (132.6 and 132.7) MD142
T PQD 266 //Store value level 2
```

The first line will load level 2 (double word) from MD 142. The second line will copy level 2 (double word) into the SGM740 or SGM840.

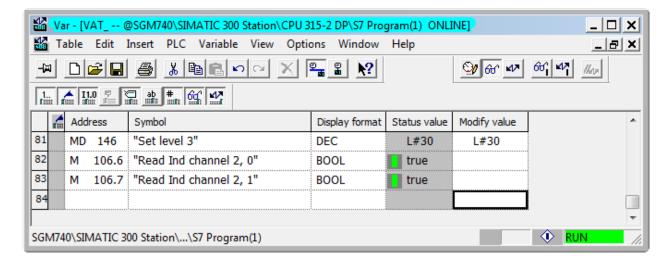
In the example below level 2 is set, the value (20) will be shown in MD 142.

Set level 3

The Setpoint for level 3 can be set at address PQD 270

Note: to change the value of level 3, command bit 7 and 8 (indicator channel 2,0 and 2,1) must be set. The addresses will be M 132.6 and M 132.7.

```
)092 Module = "SGM740" 0x6A, 0x5F
| 1093; Inputs: double word, 32 bit signed integer/float, weight register
)094
                   word, 16 bit status
                   byte, 8 bit command (if addressed as word high byte is command, low byte is select register)
0096
0097
                   byte, 8 bit weight select register
word, 16 inputs 1..16, iputs 4-16 are virtual inputs generated by software
                   word, 16 outputs 201..216, outputs 5-16 are virtual outputs generated by software
0098;
)099 ;
)100 :
              double word, 32 bit signed integer, preset tare
0101 :
)102
              double word, 32 bit signed integer/float, indicator gross x10(same as weight select register 9)
              double word, 32 bit signed integer/float, indicator net x10(same as weight select register 10) double word, 32 bit signed integer/float, indicator tare x10(same as weight select register 13)
)103 ;
)104 ;
)105
              double word, 32 bit signed integer/float, multirange weight (same as weight select register 0)
)106
)107 ; Outputs:
                       byte, 8 bit command (if addressed as word high byte is command, low byte is select register)
)108
                   byte. 8 bit weight select register
)109
)110 ;
)111 ;
              double word, 32 bit signed integer, preset tare. Setup this register and at rising edge of command bit 5 preset tare is activated.
)112;
              double word, 32 bit signed integer, level 1
)113 ;
              double word, 32 bit signed integer, level 2
D114 ·
              double word, 32 bit signed integer, level 3
              double word, 32 bit signed integer, level 4
0115
```


To set level 3, write the following lines:

```
L "Set level 3" //Load Value level 3 To set a new setpoint level, command "indicator channel 2,0 and 2,1 must be set high (132.6 and 132.7)

MD146
T PQD 270 //Store value level 3
```

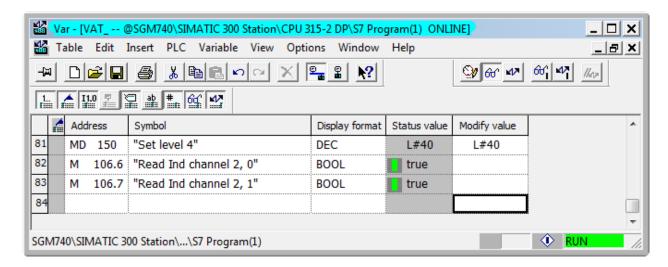
The first line will load level 3 (double word) from MD 146. The second line will copy level 3 (double word) into the SGM740 or SGM840.

In the example below level 3 is set, the value (30) will be shown in MD 146.

Set level 4

The Setpoint for level 4 can be set at address PQD 274.

Note: to change the value of level 4, command bit 7 and 8 (indicator channel 2,0 and 2,1) must be set. The addresses will be M 132.6 and M 132.7.


```
)092 Module = "SGM740" 0x6A, 0x5F
)093; Inputs: double word, 32 bit signed integer/float, weight register
)094
                    word, 16 bit status
                    byte, 8 bit command (if addressed as word high byte is command, low byte is select register)
0096
                    byte, 8 bit weight select register
word, 16 inputs 1..16, iputs 4-16 are virtual inputs generated by software
1097
                    word, 16 outputs 201..216, outputs 5-16 are virtual outputs generated by software
0098;
)099 ;
)100 :
               double word, 32 bit signed integer, preset tare
)101 :
)102
               double word, 32 bit signed integer/float, indicator gross x10(same as weight select register 9)
               double word, 32 bit signed integer/float, indicator net x10(same as weight select register 10) double word, 32 bit signed integer/float, indicator tare x10(same as weight select register 13) double word, 32 bit signed integer/float, multirange weight(same as weight select register 0)
)103 ;
)104 ;
)105
)106
)107; Outputs:
                        byte, 8 bit command (if addressed as word high byte is command, low byte is select register)
)108 :
                    byte. 8 bit weight select register
)109
)110 ;
)111 ;
               double word, 32 bit signed integer, preset tare. Setup this register and at rising edge of command bit 5 preset tare is activated.
)112;
               double word, 32 bit signed integer, level 1
)113;
               double word, 32 bit signed integer, level 2
D114 ·
               double word, 32 bit signed integer, level 3
0115
               double word, 32 bit signed integer, level 4
```

To set level 4, write the following lines:

```
L "Set level 4" //Load Value level 4 To set a new setpoint level, command "indicator channel 2,0 and 2,1 must be set high (132.6 and 132.7) MD150
T PQD 274 //Store value level 4
```

The first line will load level 4 (double word) from MD 150. The second line will copy level 4 (double word) into the SGM740 or SGM840.

In the example below level 4 is set, the value (40) will be shown in MD 150.

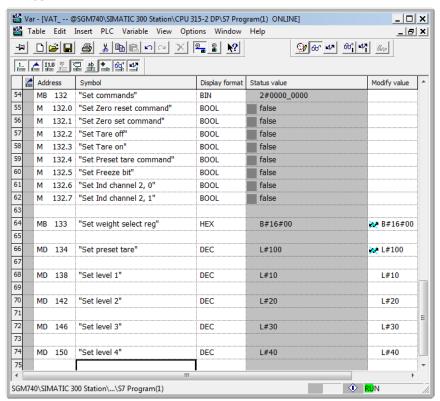
Complete program to read and write values

Read:

		ght select register, inputs, outputs information to the PLC	
	ID 256	//Load Weight register	
r "R	Read Weight register"	//Store Weight register	
	IW 260	//Load Status	
r "R	Read Status bits"	//Store Status	
L PI	IB 262	//Load Command bits and weight select register	
T "R	Read Command bits"	//Store Command bits and weight select register	
L PI	IB 263	//Load Weight select register	
r "R	Read Weight select reg"	//Store Weight select register	
L PI	W 264	//Load inputs	
r "R	Read Inputs"	//Store inputs	
L PI	W 266	//Load outputs	
T "R	Read Outputs"	//Store outputs	
	ID 268	//Load preset tare value	
T "R	Read Preset tare value"	//Store preset tare value	
	ID 272	//Load indicator value gross x10	
T "R	Read Ind value gross x10"	//Store indicator value gross x10	
	ID 276	//Load indicator value net x10	
r "R	Read Ind value net x10"	//Store indicator value net x10	
	ID 280	//Load indicator value tare x10	
r "R	Read Ind value tare x10"	//Store indicator value tare x10	
L PI	ID 284	//Load indicator value multirange weight	
т "в	Read Multirange weight"	//Store indicator value multirange weight	


Write:

//Sen	d comma	ands, weight select register	, preset tare and levels for the PLC to the SGM 740 or SGM840 Weight	
	L T	"Set commands" PQB 256	//Load Command //Store Command	MB132
	L T	"Set weight select reg" PQB 257	//Load weight select register //Store weight select register	MB133
	L T		//Load set preset tare value	MD134
	L L	"Read Preset tare value" "Set preset tare"	//Load current preset tare value //Load set preset tare	MD112 MD134
	<>D =	"Set Preset tare command"	//If set preset tare not equel with read preset tare //Command bit "preset tare" is on, storing the new preset tare into the SGM740 or SGM840	M132.4
	L T	"Set level 1" PQD 262	//Load Value level 1 To set a new setpoint level, command "indicator channel 2,0 and 2,1 must be set high (132.6 and 132.7) //Store value level 1	MD138
	L T	"Set level 2" PQD 266	//Load Value level 2 To set a new setpoint level, command "indicator channel 2,0 and 2,1 must be set high (132.6 and 132.7) $//Store$ value level 2	MD142
	L T	"Set level 3" PQD 270	//Load Value level 3 To set a new setpoint level, command "indicator channel 2,0 and 2,1 must be set high (132.6 and 132.7) $//Store$ value level 3	MD146
	L T	"Set level 4" PQD 274	//Load Value level 4 To set a new setpoint level, command "indicator channel 2,0 and 2,1 must be set high (132.6 and 132.7) $//Store$ value level 4	MD150


Variable table

Read:

Write:

About PENKO

Our design expertise include systems for manufacturing plants, bulk weighing, check weighing, force measuring and process control. For over 35 years, PENKO Engineering B.V. has been at the forefront of development and production of high-accuracy, high-speed weighing systems and our solutions continue to help cut costs, increase ROI and drive profits for some of the largest global brands, such as Cargill, Sara Lee, Heinz, Kraft Foods and Unilever to name but a few.

Whether you are looking for a simple stand-alone weighing system or a high-speed weighing and dosing controller for a complex automated production line, PENKO has a comprehensive range of standard solutions you can rely on.

Certifications

PENKO sets high standards for its products and product performance which are tested, certified and approved by independent expert and government organizations to ensure they meet – and even – exceed metrology industry guidelines. A library of testing certificates is available for reference on:

http://penko.com/nl/publications_certificates.html

PENKO Professional Services

PENKO is committed to ensuring every system is installed, tested, programmed, commissioned and operational to client specifications. Our engineers, at our weighing center in Ede, Netherlands, as well as our distributors around the world, strive to solve most weighing-system issues within the same day. On a monthly basis PENKO offers free training classes to anyone interested in exploring modern, high-speed weighing instruments and solutions. A schedule of training sessions is found on: www.penko.com/training

PENKO Alliances

PENKO's worldwide network: Australia, Belgium, Brazil, China, Denmark, Germany, Egypt, Finland, France, India, Italy, Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Syria, Turkey, United Kingdom, South Africa, Slovakia Sweden, Switzerland and Singapore. A complete overview you will find on: www.penko.com/dealers

