

PENKO Engineering B.V.
Your Partner for Fully Engineered Factory Solutions

Penko EasyWeigher End User manual

Penko EasyWeigher manual

2

CONTENTS

1. Introduction .. 3

2. Getting started .. 3

2.1. Download device descriptions and libraries .. 3

2.2. Install device descriptions and libraries ... 4

3. View documentation inside the library ... 5

4. Set up an example project .. 5

4.1 Create the project ... 5

4.2 Example IO mapping ... 7

4.3 Weigher status struct mapping .. 8

4.4 Weigher commands (tare, zero, etc) .. 9

4.5 Reading configuration ... 11

4.6 Writing configuration – Industrial Mode .. 13

4.7 Writing configuration – Certified Mode ... 14

4.8 Calibration .. 15

Penko EasyWeigher manual

3

1. INTRODUCTION

The Penko EasyWeigher solution helps to quickly get started with your Omega. It consists of a CODESYS library

for CODESYS V3.5 SP17, and a set of CODESYS device descriptions (*.devdesc.xml) to talk to the option cards.

All files can be downloaded directly from your Omega.

2. GETTING STARTED

This chapter will guide you through downloading and installing the necessary files and libraries, and help you

setup a very simple starter project. Subsequent chapters will further expand this example with more

functionality.

It is expected that you have setup your Omega, and that you can connect to your Omega’s web portal from the

PC you’re working on. See the Omega manual (‘7600M1082-<LANGUAGE>-R8 MANUAL OMEGA.pdf’) on how

to setup your Omega.s

2.1. DOWNLOAD DEVICE DESCRIPTIONS AND LIBRARIES

An archive with device descriptions and libraries can be downloaded from two different locations: from the

Omega web portal (recommended), and via the CODESYS file manager within the IDE.

Recommended method: Download from the Omega web portal

Navigate to your Omega’s web portal, login and click on “CODESYS Downloads”. Follow the steps there to

download the libraries and device descriptions as .zip file from that page, and install in CODESYS, see Figure 1.

Figure 1. Navigate to "CODESYS getting started".

Penko EasyWeigher manual

4

Alternative method: Download via the CODESYS IDE file manager

This step only works if you already have your Omega device description installed in the CODESYS IDE and you

have some CODESYS experience. If you haven’t, please get the libraries and device descriptions via one of the

other methods.

First, find and connect to your Omega, and navigate to the ‘Files’ tab in the ‘Device’ window, see Figure 2.

Figure 2. Navigate to the 'Files' tab

The local file system is visible on the left side. After clicking the refresh icon on the right side, the file system on

the Omega becomes visible, see Figure 3.

Figure 3. Omega file system

All directories CODESYS knows about become visible. The $DeviceDescriptions$ directory contains all device

descriptions that can be used with the Omega. The $CODESYSLibraries$ directory contains CODESYS libraries

that can be installed into your IDE to make use of all Omega functionality. Double-click the

$DeviceDescriptions$ directory, select all device descriptions and use the arrows in the middle to copy them to

a location on your hard drive. Similarly, open the $CODESYSLibraries$ directory and copy the libraries to your

PC.

2.2. INSTALL DEVICE DESCRIPTIONS AND LIBRARIES

Follow the standard CODESYS procedure to install the device descriptions and libraries that were extracted

from the .zip file.

Penko EasyWeigher manual

5

3. VIEW DOCUMENTATION INSIDE THE LIBRARY

Extensive documentation of all objects and types can be found in the Penko EasyWeigher library itself from

within CODESYS. Select the “Penko EasyWeigher Library” in the Library Manager in your project to find

information about the automatically generated objects and how to use them. Here you can also find the list of

enum definitions that is supported by your library.

See Figure 4.

Figure 4. View Penko Easyweigher library documentation in the CODESYS IDE

4. SET UP AN EXAMPLE PROJECT

Prerequisites

Before setting up an example project, please make sure that your Omega is setup correctly. For more

information on how to do this, and for all connection diagrams, refer to the Omega manual (7600M1082-

<LANGUAGE>-R8 MANUAL OMEGA.pdf’). Please make sure that:

1. You can navigate to the Omega web portal in your browser via its IP address.

2. The first slot in the rack is occupied by an Omega ADC DIO module. It does not matter what is plugged into

the other slots.

3. A load cell or load cell simulator is attached to the channel 1 load cell connector of the Omega ADC DIO

module.

4.1 CREATE THE PROJECT

When you have confirmed that your Omega is online and its web portal is reachable in your browser, start

CODESYS and create a new ‘Standard project’.

After clicking “OK”, CODESYS asks you to select the device this project is for, and the programming language

you’ll be working in. Follow Figure 5 to select the “Penko Omega (Penko Engineering BV)” device. Then, select

the programming language. In your own future projects you can use what you are most comfortable with, but

this example project will use the Function Block Diagram language (Figure 6)

Figure 5. Select Penko Omega as device

Figure 6. Select FBD as programming language

When the device and language are configured, click OK. You should now see an empty project for a Penko

Omega device, with an “Omega_Rack” as attached device as in Figure 7.

Figure 7. An Omega starter project.

Add an Omega ADC DIO module to the Omega Rack

Let CODESYS know about your Omega ADC DIO module by right-clicking the first slot in the Omega Rack, and

select “Plug Device” (Figure 8). You should see four options in the popup window (Figure 9), one of which is the

Omega ADC DIO Card. Select this and click “Plug Device” in the right-bottom corner. After CODESYS has added

the card, click “Close”.

Figure 8. Plug a device in the first slot.

Figure 9. Select 'Omega ADC DIO Card'

Two new devices have been added of type “Omega ADC DIO easyIND” below the plugged device, one for each channel in the

card.

4.2 EXAMPLE IO MAPPING

Create a new variable in PLC_PRG called “rNetWeight” of type “std:REAL”:

PROGRAM PLC_PRG
VAR
 rNetWeight : REAL;
END_VAR

Then map this variable to the “Net” parameter of the first channel. To to this, double click the first channel, navigate to the

“Mapping” tab and open the “Weights” folder. Click the three dots to open a window where you can select the variable to map

(Figure 10). Then follow Figure 11 to add a mapping to “rNetWeight”.

Figure 10. Navigate to IO Mapping.

MANUAL SGM800

8

Figure 11. Map rNetWeight to the IO Channel.

The “rNetWeight” variable is now mapped to the “Net” IO channel of Channel 1 of the Omega ADC DIO Card. There is one more

thing to do though:

If we would upload this, CODESYS will notice that “rNetWeight” is not used in the code, and optimize its access away. To prevent

this, force CODESYS to always update all mapped variables by selecting “Enabled 1” for “Always update variables”. See Figure 12

for how to do this.

Figure 12. Tell CODESYS to always update all variables.

Now we’re ready to login and upload. Changing the weight on the load cell or load cell simulator should be visible in the

rNetWeight variable.

4.3 WEIGHER STATUS STRUCT MAPPING

The weigher status is a struct consisting of a number of bits that describe the current status of the weigher. For example, it tells

you whether or not the weight is stable, if the weight is higher than what the hardware can manage, or if (preset) tare is active.

The mapping is found in the ‘Weights’ folder of the IO mapping, with the name ‘Status’.

MANUAL SGM800

9

To use this status in your program, create a new variable with the correct struct type in your program:
PROGRAM PLC_PRG
VAR
 rNetWeight : REAL;
 stStatus : Penko_EasyWeigher_Library.IndicatorStatus;
END_VAR

The CODESYS autocompletion is your friend in the struct type: start typing ‘Penko_’, press “CTRL+Space”, and CODESYS will

automatically fill the rest of the EasyWeigher name. After the ‘.’, CODESYS will show ‘IndicatorStatus’ as one of the options.

Map stStatus to the Status channel in the IO mapping, similar to how rNet was mapped in the previous section. After this,

your IO mapping should look like Figure 13 below.

Figure 13. Map the stStatus struct to the Status Channel

4.4 WEIGHER COMMANDS (TARE, ZERO, ETC)

Each channel in the rack automatically generates four objects that can be found in the “IEC Objects” tab of the respective

channel. The name of the object is prefixed with the name of the channel it belongs to. In the example that is

“Omega_ADC_DIO_easyIND”, then an underscore, and then the type of object.

If the name of the channel changes, then the prefix changes as well.

Basic CODESYS skills are assumed in this section, such as adding a POU and creating a Visualization with a textfield and a button.

This section will focus on the Command object. We will extend the example program with visualization that shows the current

weight, and a button to perform a tare action.

Show the current weight in a Visualization.

First add a Visualization Manager to your project. Then add a textfield with the text “%f” and our “rNetWeight” variable as “Text

variable”.

Upload your program and verify that the visualization shows the current weight.

Insert the Command function block for the first channel.

Insert an empty Box in the first network of the PLC_PRG, and make it the “_Command” object that starts with the same name as

your first channel. If you did not rename the first channel, the object will be called “Omega_ADC_DIO_easyIND_Command”. See

Figure 14. If all went well, the first network now contains the Omega_ADC_DIO_easyIND_Command object as shown in Figure

15.

MANUAL SGM800

10

Figure 14. Use an Omega_ADC_DIO_easyIND_Command function block.

Figure 15. The Omega_ADC_DIO_easyIND_Command function block has been added.

The Command object has three inputs:

1. xExecute: a Boolean that indicates whether the function block should be doing its command.

2. eCommandType: an Enum of type CommandType. The Enum is defined in the EasyWeigher library, and defines for example

COMMAND_TARE_SET. See the documentation inside the EasyWeigher library for more commands (follow Chapter 3).

3. rOptionalDataIn: Some commands require an input argument, such as COMMAND_PTARE_SET to set the preset tare to a

predefined weight. Other commands such as COMMAND_TARE_SET do not require an input argument. In those cases, this

field can be left empty.

 The Command also has three outputs:

1. xDone: a Boolean that is TRUE when the function block is done, and FALSE when the function block is not executing

(xExecute is FALSE) or not yet done executing and thus needs another execution cycle.

2. xError: a Boolean that is TRUE when something went wrong during execution.

3. eError: an enum of type ErrorType, which indicates what went wrong in case of an error. When there is no error, this

will be ERROR_SUCCESS. All values of this enum are defined and documented in the EasyWeigher library.

Use the Command function block for the first channel.

We will set and reset a tare as a test. First, add two booleans to your PLC_PRG that indicates whether the Command functions

block will be run, one to set the tare, and one to reset the tare:
PROGRAM PLC_PRG

MANUAL SGM800

11

VAR
 rNetWeight : REAL;
 xExecuteTareSet : BOOL;
 xExecuteTareReset : BOOL;
END_VAR

Then, tie xExecuteTareSet to the xExecute input of the Command function block, and set the eCommandType input to

COMMAND_TARE_SET. The easiest way to do this is start typing “COMMAND_” in the eCommandType field, and press CTRL+SPACE to

let CODESYS do the autocompletion. This will give a list of COMMAND_ values that can be filled in. COMMAND_TARE_SET can be

selected from the list by double clicking the entry. CODESYS will automatically add the namespace, which is

‘Penko_EasyWeigher_Library.CommandType’ in this example.

For testing it would be nice to automatically set xExecuteTareSet back to FALSE when the command block is done: to achieve

this, xExecuteTareSet is set to FALSE when xDone is TRUE, and is unchanged while xDone is FALSE. See Figure 16.

Figure 16. A simple network to activate a tare.

In a similar way, we can create a network to reset the tare below that. Note that we added two new Boolean values:

xExecuteTareReset and xDoneTareReset, and that the eCommandType input has changed to COMMAND_TARE_RESET.

Figure 17. A simple network to deactivate the tare.

Set the xExecuteTareSet and xExecuteTareReset variables using a button in the Visualization or via the debugging

functionality, and check that setting a tare sets the net weight to zero, and resetting the tare sets the weight back.

4.5 READING CONFIGURATION

The function block to read configuration is named $(deviceName)_ConfigRead. If the first channel of the first Omega card was

not renamed, the function block named Omega_ADC_DIO_easyIND_ConfigRead can be used to read configurations of that

channel.

Insert the ConfigRead function block for the first channel.

To start, add a third network, insert an empty box in that network and make it the _ConfigRead function block, similar to how

the _Command function block was inserted in Figure 14. Your network should look like Figure 18 below:

MANUAL SGM800

12

Figure 18. The Omega_ADC_DIO_easyIND_ConfigRead block is added to a network.

All inputs and outputs of this ConfigRead block are explained in detail in the EasyWeigher library documentation within

CODESYS, (see Chapter 3 on how to get there. The Config block works following the same principles as the Command block: it

executes while input xExecute is high, and input eConfigType defines what configuration parameter is being read.

It is important to note that there are two data outputs: udiDataOut and rDataOut. Some configuration parameters are weights.

As before, all weights are of type REAL, and these parameters thus need to be read from rDataOut.

For example, when eConfigType is set to CONFIG_MAXLOAD, the block will read the MaxLoad parameter from the weigher

configuration, and this is a weight. Therefore, the correct output appears at rDataOut.

Similarly, when eConfigType is set to CONFIG_DECIMALPOINT, the block will read out the number of decimals the weigher uses

internally. This is inherently an integer number. Therefore, the correct output appears at udiDataOut.

All possible enum values for eConfigType can be found in the EasyWeigher library documentation within CODESYS (see Chapter

3), and each value documents which output must be used.

Use the ConfigRead function block for the first channel.

Let’s use this ConfigRead block to read out the decimal precision that is used in the weight. First, add some variables to the

PLC_PROG, one to execute the block and one to store its result:

PROGRAM PLC_PRG
VAR
 rNetWeight : REAL;
 xExecuteTareSet : BOOL;
 xExecuteTareReset : BOOL;
 xExecuteConfigReadDecimals : BOOL;
 udiDecimalsRead : UDINT;
END_VAR

The number of decimals that the weigher uses internally is read by setting input eConfigType to

PENKO_EASYWEIGHER.ConfigType.CONFIG_DECIMALPOINT, adding the udiDecimalsRead variable to the udiDataOut output, and

tieing the xExecuteConfigReadDecimals variable to the xExecute input like we did before. For easier testing, the NOT-AND

network is added after xDone to automatically reset xExecuteConfigReadDecimals. See Figure 19 below.

Figure 19. Variables are tied to the ConfigRead block.

MANUAL SGM800

13

Use the CODESYS debugging functionality to set xExecuteConfigReadDecimals to TRUE, and observe that the number of

decimals that are used in the weighing card are put into udiDecimalsRead. In the example below, the weight used three

decimals precision (Figure 20).

Figure 20. Use the CODESYS debugger to toggle reading the number of decimals.

4.6 WRITING CONFIGURATION – INDUSTRIAL MODE

Writing a configuration in industrial mode is very similar to reading a configuration. The only difference is that a different

Function Block must be used, which has inputs udiDataIn and rDataIn, instead of two outputs udiDataOut and rDataOut.

Insert the ConfigWrite function block for the first channel.

Add a fourth network, insert an empty box in that network and make it the _ConfigWrite function block, similar to how the

_Command function block was inserted in Figure 14.

Your network should look like Figure 19 below.

Figure 21. The Omega_ADC_DIO_easyIND_ConfigWrite block is added to a network.

All inputs and outputs are documented extensively in the EasyWeigher library documentation within CODESYS, and work very

similar to the earlier Command and ConfigRead blocks.

This ConfigWrite block has two data inputs, udiDataIn and rDataIn, to allow two types of data to be written to the indicator

configuration. rDataIn is used to write weights of type REAL such as the MaxLoad parameter, udiDataIn is used to write integer

values such as the number of decimals that is used internally.

IMPORTANT: Whenever one input is used, the other input MUST BE ZERO.

MANUAL SGM800

14

Use the ConfigRead function block for the first channel.

Add two new variables xExecuteConfigWriteDecimals and udiDecimalsWrite to your PLC_PRG, and complete the network

similar to the ConfigRead network from the previous section. In the end, your network should look like Figure 22 below:

Figure 22. Variables are tied to the ConfigWrite block.

Note that, because udiDataIn must be used and not rDataIn, rDataIn has been set to zero.

Use the CODESYS debugging functionality to prepare a value for udiDecimalsWrite and xExecuteConfigWriteDecimals, similar

to the previous section and Figure 20. If the number of decimals was e.g. 3, set udiDecimalsWrite to 2. After writing the new

udiDecimalsWrite value (don’t forget to set xExecuteConfigWriteDecimals high to do the write action), the weight in

rNetWeight should have changed accordingly (e.g. by changing a factor 10).

4.7 WRITING CONFIGURATION – CERTIFIED MODE

When the Omega weighing module is configured to be in certified mode, the configuration is protected by a TAC value. The TAC

value is used to prevent the configuration from being changed accidentally. Trying to write a config value without unlocking the

configuration will result in an eError=ERRORTYPE_ACCESSDENIED.

Managing the TAC value

Unlocking the configuration is not difficult: first read the current required TAC value, and then write that same TAC value back.

This will unlock the configuration for approximately 100 seconds.

In a certifiable system, the CODESYS programmer must create a bit of visualization for the end user, who has to enter the

current TAC manually to write back his configuration. This way, writing configuration values becomes a conscious effort for the

end user which reduces chances of accidentally changing the configuration and thereby breaking the certification.

While it is possible for the CODESYS programmer to programmatically read out the TAC and write it back automatically, it takes

away the conscious effort for the end user, and thus takes away the safety mechanism. If your product needs to be certified, this

is very probably not allowed.

The most user friendly way to write the configuration from for example a visualization is to let your user fill in the configuration

they want, and then write it to the Omega weighing module all at once. That way, your user does not have to enter the TAC

code each time they write a configuration value, but only the one time that all configuration values are written.

Reading the TAC value

The TAC value is part of the configuration block, and can be read just like any configuration using the _ConfigRead block of your

module, with input eConfigType set to PENKO_EASYWEIGHER.ConfigType.CONFIG_TAC. See Figure 23 below. If you want to have

xExecuteConfigReadTAC automatically reset when the block is done, use the same NOT+AND boxes after xDone as we did in the

previous examples.

MANUAL SGM800

15

Figure 23. Read the TAC value using the ConfigRead block.

Writing the TAC value

The TAC is written in the same way as any configuration value, using the _ConfigWrite block. Again, the eConfigType must be

set to PENKO_EASYWEIGHER.ConfigType.CONFIG_TAC, as in Figure 24.

Figure 24. Write the TAC value using the ConfigWrite block.

4.8 CALIBRATION

All calibration actions are done using the $(deviceName)_Calibrate function block, as shown in Figure 25.

Figure 25. The _Calibrate block.

The _Calibrate block operates in the same way as the _Command, _ConfigRead and _ConfigWrite blocks. Depending on the

calibration action you choose for input eCalibrateType you may have to provide extra input data to udiOptionalDataIn or

rOptionalDataIn. Also depending on the calibration action is whether it function block generates an output in

udiOptionalDataOut or rOptionalDataOut. Which actions there are, and what inputs they need and what outputs they

generate is documented in the EasyWeigher library documentation within CODESYS.

Calibration is very similar to writing configurations in certified mode. The same way that the TAC code acts as a protection

against accidental changes in the configuration, the calibration is protected by a CAL code. The CAL code needs to be managed

in the same way as the TAC code in certified mode.

MANUAL SGM800

16

Managing the CAL code

The CAL code must be managed in the same way as the TAC code, see Section 4.6 above. In short, when a calibration action

returns ERRORTYPE_ACCESSDENIED, you will have to let your user enter the CAL code to unlock the calibration.

Reading and writing the CAL code

To start, add the following variable definitions to your PLC_PRG:

PROGRAM PLC_PRG
VAR
// all the previous definitions
// …
 xExecuteCalibrateReadCal : BOOL;
 xExecuteCalibrateWriteCal : BOOL;
 udiCalRead : UDINT;
 udiCalWrite : UDINT;
 eErrorCalibrateReadCal : Penko_EasyWeigher_Library.ErrorType;
 eErrorCalibrateWriteCal : Penko_EasyWeigher_Library.ErrorType;
END_VAR

Reading and writing the CAL code is done in a similar way to reading and writing the TAC code. However, this time the _Calibrate

block is used, instead of the _ConfigRead or _ConfigWrite block. See Figure 26. Reading and writing the CAL code..

Figure 26. Reading and writing the CAL code.

About PENKO

At PENKO Engineering we specialize in weighing. Weighing is inherently chemically correct, independent of consistency, type or temperature of

the raw material. This means that weighing any kind of material guaranties consistency and thus, it is essential to sustainable revenue generation

in any industry. As a well-established and proven solution provider, we strive for the ultimate satisfaction of custom design and/or standard

applications, increasing your efficiencies and saving you time, saving you money.

Whether we are weighing raw materials, components in batching, ingredients for mixing or dosing processes, - or weighing of static containers

and silos, or - in-motion weighing of railway wagons or trucks, by whatever means required during a process, we are essentially forming vital

linkages between processes and businesses, anywhere at any time. We design, develop and manufacture state of the art technologically

advanced systems in accordance with your strategy and vision. From the initial design brief, we take a fresh approach and a holistic view of every

project, managing, supporting and/or implementing your system every step of the way. Curious to know how we do it? www.penko.com

Certifications

PENKO sets high standards for its products and product performance
which are tested, certified and approved by independent expert and
government organizations to ensure they meet – and even – exceed
metrology industry guidelines. A library of testing certificates is
available for reference on:

www.penko.com/nl/publications_certificates.html

PENKO Professional Services

PENKO is committed to ensuring every system is installed, tested,
programmed, commissioned and operational to client specifications.
Our engineers, at our weighing center in Ede, Netherlands, as well as
our distributors around the world, strive to solve most weighing-system
issues within the same day. On a monthly basis PENKO offers free
training classes to anyone interested in exploring modern, high-speed
weighing instruments and solutions. Training sessions on request:
www.penko.com/training

 PENKO Distributor

A complete overview you will find on: www.penko.com/Find-A-Dealer

 PENKO Engineering B.V. ▪ Schutterweg 35, NL 6718C Ede ▪ Tel +31 (0) 318525630 ▪ info@penko.com

 Web ▪ www.penko.com ▪ Copyright © 2022 ETC All rights reserved. 7600M1085-EN-R3-EASYWEIGHER END USER MANUAL.DOCX

http://www.penko.com/
http://www.penko.com/nl/publications_certificates.html
http://www.penko.com/training
http://www.penko.com/Find-A-Dealer

