
PENKO TP Protocol

1

PENKO Engineering B.V.
Your Partner for Fully Engineered Factory Solutions

Protocol description:

 PENKO Two Phase (TP)

PENKO TP Protocol

2

1 Table of Contents
2 Introduction ... 3

3 TP serial ... 4

4 TP UDP ... 6

5 TP data description .. 7

5.1 Reply code 0x53: Device busy internal .. 9

5.2 Reply code 0x54: Function parameter error ... 9

5.3 Reply code 0x55: Function accepted and done .. 9

5.4 Reply code 0x57: Host functions disabled... 9

5.5 Reply code 0x58: Internal status conflict .. 9

5.6 Reply code 0x59: Unknown command .. 9

5.7 Command code 0x01: Real-Time Clock ... 10

5.8 Command code 0x46: Indicator functions .. 12

5.9 Command code 0x5A: S/W version ... 17

5.10 Command code 0x5D: H/W & application id .. 17

5.11 Command code 0x5E: FLASH functions ... 18

5.12 Command code 0x64: Echo functions ... 24

5.13 Command code 0x78: Controller interface ... 25

5.13.1 System functions ... 25

5.13.2 Input/output .. 27

5.13.3 Extended registers ... 33

5.13.4 Indicator .. 37

5.13.5 Labels ... 41

5.14 Command code 0xB4: PDI functions ... 44

PENKO TP Protocol

3

2 Introduction
The PENKO TP protocol is a Binary burst two phase protocol. The protocol can be used over serial

(RS232, RS422, RS485, USB) and Ethernet (UDP) connections.

The TP protocol is used between PENKO devices, PC’s, PLC’s and other PENKO equipment and is used for

programming PENKO equipment, asking the status of I/O and reading out indicator values.

The TP protocol is based on two parts; a request and a reply. Both phases use the same shape for

sending data. The difference is made by who takes the initiative for the phase. In the first phase of the

protocol, the request, the initiative is taken by the master. Most of the times this will be a PC application,

but it can also be an application on a PLC or other embedded device. The second phase is initiated by the

slave. This is the reply message. This role will be mostly fulfilled by an embedded device such as an

indicator or a remote I/O unit. After sending the reply, the communication cycle is closed and a new

request can be sent.

The latest addition to the TP protocol is PDI, PENKO Device Interface. PDI is available in the current line

of PENKO devices and shows the complete device configuration in a tree structure. Every property in the

tree has a unique path number, and through these path numbers every property can be accessed using

TP_PDI.

PENKO TP Protocol

4

3 TP serial
The TP serial frames are constructed as follows.

Request frame:

Byte Byte Byte[] Byte Byte

DLE STX Address Data Checksum DLE ETX

Reply frame:

Byte Byte Byte[] Byte Byte

DLE STX Address Data Checksum DLE ETX

Frame description:

Frame part Description

DLE + STX Preamble

Address Port address set in device. For USB connection the address is always 0.

Data Command code, Operation code and parameters, described in chapter Data description

Checksum Checksum, described in Checksum calculation

DLE + ETX Postamble

Used characters:

Character Decimal Hexadecimal Description

STX 2 0x02 Start of TeXt

ETX 3 0x03 End of TeXt

DLE 16 0x10 Data Link Escape

The postamble must be the only DLE+ETX sequence in the protocol in order to indicate the end of a

frame. For every character in the address, data or checksum that equals the DLE character, an extra DLE

character is added to ensure the uniqueness of the postamble. The extra DLE characters are not included

in the checksum calculation.

PENKO TP Protocol

5

Checksum calculation:

The checksum is the inverted first complement of the sum of the address byte and all data bytes. The

possible extra DLE characters, as described above, are not included in this calculation.

Example:

The sum of the address byte and data bytes (excluding possible extra DLE characters) is 0x1234

Get the first complement: 0x1234 AND 0xFF = 0x34

Inverse the result: 0x34 XOR 0xFF = 0xCB

PENKO TP Protocol

6

4 TP UDP
The TP UDP frames are constructed as follows.

Request frame:

Byte Byte Byte Byte Byte[]

0x00 0x00 0x00 0x00 Data

Reply frame:

Byte Byte Byte Byte Byte[]

0x00 0x00 0x00 0x00 Data

Frame description:

Frame part Description

0x00 Preamble, default 4 x 0x00, reserved for future extensions

Data Command code, Operation code and parameters, described in chapter Data description

Compared to the serial TP frame, the TP protocol over Ethernet has no address, preamble, postamble,

checksum and extra DLE characters in the communication frame.

PENKO TP Protocol

7

5 TP data description
The data frames in the serial and UDP communication are constructed as follows.

Request data frame:

Byte Byte Byte[]

Command code Operation code Parameters

Reply data frame:

Byte Byte Byte[]

Command code Operation code Parameters

Frame description:

Frame part Description

Command code Feature of the device to perform the request on

Operation code Operation to perform on the feature, not present in all features

Parameters Parameters belonging to the operation, not present in all operation

A complete TP serial frame:

Byte Byte Byte[] Byte Byte

DLE STX Address Data Checksum DLE ETX

Byte Byte Byte[]

Command code Operation code Parameters

A complete TP UDP frame:

Byte Byte Byte Byte Byte[]

0x00 0x00 0x00 0x00 Data

Byte Byte Byte[]

Command code Operation code Parameters

PENKO TP Protocol

8

The following command codes are available. Usually the command code in the request frame is replied

in the reply frame.

Command codes (request and reply):

Command code Name Description

0x01 RTC Real-Time Clock

0x46 INDICATOR Indicator functions

0x5A VERSION S/W version

0x5D ID H/W & application id

0x5E FLASH FLASH functions

0x64 ECHO Echo functions

0x78 SBC Batch Controller

0xB4 PDI PDI functions

In some cases only an acknowledge command code is returned, or in case a reply cannot be sent, one of

the error command codes is returned.

Reply codes:

Command code Name Description

0x53 BUSY Device busy internal

0x54 ERROR Function parameter error

0x55 ACK Function accepted and done

0x57 DISABLED Host functions disabled

0x58 NAK Internal status conflict

0x59 ILLEGAL Unknown command

The available features depend on the hardware platform. Most features have an operation code to check

the availability.

PENKO TP Protocol

9

5.1 Reply code 0x53: Device busy internal
When a function is applied while the slave device has been long engaged in another activity, e.g. user

input, this result code can be returned. When receiving this result the master can decide if he continues

to poll the relevant slave until it can answer or that another device is accessed. This result code is only

applicable to single-threaded applications, which often have to do with user input.

5.2 Reply code 0x54: Function parameter error
Upon receiving a function call, a check is done on the number of bytes received. When the number of

bytes does not match the number specified for the requested feature, this feature is not implemented

and this code is returned. This error can be caused by a transmission error in which a character is lost but

the checksum is still correct. More likely it is that a mistake was made with building the request packet

that a wrong packet size is specified.

5.3 Reply code 0x55: Function accepted and done
A function to activate an action on the slave device without returning data will give this result code to

the master after the execution of the action.

5.4 Reply code 0x57: Host functions disabled
Slave devices with a configurable user interface can disable the protocol driver so remote configuration

and / or control is no longer possible. In this case the protocol driver delivers this result code back. This

makes it possible for the master to give a detailed error notification to the user and possibly remove the

device from the communication.

5.5 Reply code 0x58: Internal status conflict
Performing a function can be connected to the internal status of the slave device. If this is the case, this

function result code comes back. Such a situation may occur when, e.g., the parameters of a slave

process are changed while the process is active. It is therefore prudent to keep track of the status of the

slave device on the master so this conflict can be prevented.

5.6 Reply code 0x59: Unknown command
When a function is applied which is not known to the slave device, this result code is returned. By asking

for the device ID there can be determined what kind of device is hidden behind the device address. On

this basis the commands that are valid for this application can be determined. Possibly you may need to

request additional information such as the version number from the slave device.

PENKO TP Protocol

10

5.7 Command code 0x01: Real-Time Clock
The real-time clock interface gives the possibility to set or read any existing real-time clock from the host

application. This simple interface consists of three functions that make use of a fixed request-reply-

structure. The table below shows the available functions.

OpCode Description

0x00 Feature detection

0x01 Read current RTC setting

0x02 Set new RTC setting

Check if the real-time clock feature is available
The availability of the real-time clock interface can be determined by means of this function. When the

interface is available, ACK will be replied.

Request:

Command OpCode

0x01 0x00

Reply (ACK):

Command

0x55

Read the real-time clock
After sending a request with this opcode a structure with fixed format is supplied back in which the

internal current date and time are indicated. For the coding of the date and time so called BCD notation

is used. For example, the value 12 (decimal) listed as 0x12 (hexadecimal).

Request:

Command OpCode

0x01 0x01

Reply:

Command OpCode Year Month Day Hour Minute Second

0x01 0x01 0x14 0x05 0x12 0x09 0x42 0x28

12 May 2014 09:42:28

PENKO TP Protocol

11

Set the real-time clock
Setting the correct date and time can be done through this opcode. A structure with fixed format has to

be sent as displayed below. Here too, the coding of the date and time is by means of BCD notation, just

as in the answer to the QUERY function.

Request:

Command OpCode Year Month Day Hour Minute Second

0x01 0x02 0x14 0x05 0x12 0x09 0x42 0x28

Reply (ACK):

Command

0x55

PENKO TP Protocol

12

5.8 Command code 0x46: Indicator functions
The indicator interface is intended to control basic indicator functions like zero and tare. A second

feature is reading the internal registers like ADC sample, Net, Gross, etc.

OpCode Description

0x00 Indicator function is available

0x01 Read indicator registers

0x02 Basic indicator commands

Check if the indicator feature is available
The availability of the interface can be detected with this function. When present an ACK reply follows. If

the interface is not present, there is automatically answered with the ERROR command.

Request:

Command OpCode

0x46 0x00

Reply (ACK):

Command

0x55

Read the indicator
This command reads the registers of the indicator. The structure of the command is shown below.

Request:

Command OpCode Indicator query

0x46 0x01 query bits

Reply:

Command OpCode Indicator query Indicator data

0x46 0x01 query bits data bits

PENKO TP Protocol

13

The following query bit combinations are available:

Query name Query bits Description

SAMPLE 0x00000001 A/D sample

FREE 0x00000002 Return always 0

FREE 0x00000004 Return always 0

STATUS* 0x00000008 Status bits weigher

GROSS X 10 0x00000010 Gross weight x 10

NET10 0x00000020 Net weight x10

FGROSS X 10 0x00000040 Filtered gross weight x10

FNET X 10 0x00000080 Filtered net weight x10

TARE X 10 0x00000100 Tare weight x10

PTARE X 10 0x00000200 Preset tare weight

GROSS 0x00000400 Gross weight

NET 0x00000800 Net weight

FGROSS 0x00001000 Filtered gross weight

FNET 0x00002000 Filtered net weight

TARE 0x00004000 Tare weight

PTARE 0x00008000 Preset tare weight

DISPLAY 0x00010000 Display weight

* Status bits weigher:

Status name Status bits Description

HWOVERLOAD 0x00000001 Hardware overload detected

MAXLOAD 0x00000002 Overload detected

STABLE 0x00000004 Stable signal

STABLERNG 0x00000008 In stable range

ZEROSET 0x00000010 Zero corrected

ZEROCENTER 0x00000020 Center of zero

ZERORANGE 0x00000040 In zero range

ZEROTRACK 0x00000080 Zero tracking possible

TARE 0x00000100 Tare active

PTARE 0x00000200 Preset tare active

NEWSAMPLE 0x00000400 New sample available

BADCAL 0x00000800 Calibration invalid

CALENABLED 0x00001000 Calibration enabled

INDUSTRIAL 0x00002000 Industrial/certified operation

NOTLEVEL 0x00004000 System level blocking

RESERVED15 0x00008000 Reserved bit fields

* 0xFFFF0000 Weigher format bits see below

PENKO TP Protocol

14

* Weigher format bits:

Bit number Description

#15 Signed/unsigned

 0 = Unsigned

 1 = Signed

#14 Zero suppressing

 0 = Nonzero suppressing

 1 = Zero suppressing

#11 - #8 Display step size

 0000 = Step 1

 0001 = Step 2

 0010 = Step 5

 0011 = Step 10

 0100 = Step 20

 0101 = Step 50

 0110 = Step 100

 0111 = Step 200

 1000 = Step 500

 1001 = Step 1000

 1010 = Step 2000

 1011 = Step 5000

#2 - #0 Decimal point position

 000 = 000000

 001 = 00000.0

 010 = 0000.00

 011 = 000.000

 100 = 00.0000

 101 = 0.00000

Control the indicator
With this command, control commands are sent to the indicator like set zero, set tare, reset tare. The

structure of the command is shown below.

Request:

Command OpCode Indicator control

0x46 0x02 control bits

Reply:

Command OpCode Indicator control

0x46 0x02 control bits

PENKO TP Protocol

15

The following control bit combinations are available:

Control name Control bits Description

ZEROSET 0x00000001 Zero set

ZERORESET 0x00000002 Zero reset

TARESET 0x00000010 Tare set, 4 byte tare value is required

TAREON 0x00000020 Auto tare

TARERESET 0x00000040 Tare reset

PTARESET 0x00000080 Preset tare set, 4 byte preset tare value is required

Examples

Get weigher status:

Request:

Command OpCode Query bits

0x46 0x01 0x00000008

Reply:

Command OpCode Query bits Data bits

0x46 0x01 0x00000008 0xC00324CC

Weigher status is 0x24 CC = Stable & Stable range & In zero range & Zero tracking possible & New

sample available & Industrial operation (see status bits table)

Weigher format is 0xC0 03 = 3 decimals & Step size 1 & Zero suppressing & Signed (see format bits table)

Get gross x 10 weigher value:

Request:

Command OpCode Query bits

0x46 0x01 0x00000010

Reply:

Command OpCode Query bits Data bits

0x46 0x01 0x00000010 0x0000162B

Gross x 10 weigher value is 0x00 00 16 2B = 5675

PENKO TP Protocol

16

Set zero:

Request:

Command OpCode Control bits

0x46 0x02 0x00000001

Reply:

Command OpCode Control bits

0x46 0x02 0x00000001

If indicator is within zero tracking range, zero is set.

Set preset tare to 200 (internal weigher works with x10 values, so set 2000 -> hex 0x07 D0):

Request:

Command OpCode Control bits Preset tare value

0x46 0x02 0x00000080 0x000007D0

Reply:

Command OpCode Control bits

0x46 0x02 0x00000080

Preset tare is set with the specified value.

PENKO TP Protocol

17

5.9 Command code 0x5A: S/W version
The S/W version number of the device can be requested using this command.

Request:

Command

0x5A

Reply:

Command Major Minor Build

0x5A 0x01 0x03 0x06

This would be replied when the software version for example is 1.3.0.9.0.6

All current PENKO devices use a 6 digit version number:

Major
release

Minor
release

Patch
release

Audience
release

Critical
situation
release

Build
number

1 3 0 9 0 6

5.10 Command code 0x5D: H/W & application id
This command provides the ability to identify the type of device in the system. The universal design of

the protocol makes it possible to apply several totally different devices in the same communication

system.

Request:

Command

0x5D

Reply:

Command Type (MSB) Type (LSB)

0x5D 0x06 0x18

This would be replied when the hardware ID is 0618.

PENKO TP Protocol

18

5.11 Command code 0x5E: FLASH functions
The device actually has two applications, a Flash-BOOT application (FBOOT) and a

target application. The FBOOT application is fixed inserted into the Flash ROM and

cannot be overwritten or deleted. For this both software and hardware blocks are

present.

The task of the FBOOT application is to ensure a stable start situation and from here

make it possible to program a new (improved) target application program in the Flash

ROM. To achieve all this, the Flash programming interface is available.

When both FBOOT and target application have a two-phase protocol, there can be switched between

both programs under control of the programming program. This way, it’s possible to build a very user

friendly programming application in which the user must perform a minimum number of operations. The

functions for erasing and writing the flash ROM are not activated in the target application so that it’s

only possible to program the ROM from the FBOOT application.

During the download of a new application program, it’s important that the programming program has

knowledge of the structure of the Flash-ROM. To transfer this knowledge of the device to the

programming program, the interface has the special function FLASH_INFO. A classification of the Flash

memory can be accessed without the need to build an extensive database of Flash memory brands and

types.

In addition to programming the application using this interface it’s possible to program and read the

device serial number. Programming of the serial number is only allowed once and is performed during

the production test. After writing it’s not possible to change the serial number.

OpCode Description FBOOT Application

0x00 Feature detection yes yes

0x01 Boot FBOOT-application no yes

0x02 Erase sector yes no

0x03 Write block yes no

0x04 Read block yes yes

0x05 Boot application yes no

0x06 Query application yes yes

0x07 Query flash type information yes yes

0x08 Query/program serial number yes yes

FBOOT

application

Target

application

Figuur 1

FBOOT-

/Target

PENKO TP Protocol

19

Check if the feature is available
The availability of the Flash interface can be detected with this function. If present, a reply with the

system command ACK follows. If the interface is not present there is automatically answered with the

ERROR command.

Request:

Command OpCode

0x5E 0x00

Reply (ACK):

Command

0x55

Boot FBOOT-application
Before the Flash ROM can be provided of a new application, the Flash BOOT program must be launched.

This happens with this command. Executing this command is confirmed with ACK. When the device is

already in the FBOOT mode there is answered with a NAK command.

Request:

Command OpCode

0x5E 0x01

Reply (ACK):

Command

0x55

Erase flah
The Flash ROM is divided into a number of sectors, each with its own size. The first sector, starting at

address 0, is reserved for the FBOOT-application. The target application starts, depending on the used

Flash ROM, at 0x4000 or 0x8000. The type and structure of the Flash ROM can be requested with the

FLASH_INFO function.

Before being able to program a sector, it must first be erased. This happens with the FLASH_ERASE

command. For this the start address of the sector is set in the address field and the function is called. An

address in the first sector, the FBOOT-Application sector, is not allowed and results in an ERROR reply.

Executing this command may take some time to complete, about one second. Attention must be paid to

the settings of the protocol timeout parameters. The delete action is checked and ACK is reported on

success. If erasing is not successful there is answered with a NAK command.

PENKO TP Protocol

20

Request:

Command OpCode Address

0x5E 0x02 0x00000000

Reply (ACK):

Command

0x55

Write flash
After erasing the sector, it can be written. Writing is done by write the data in small chunks into the

Flash. Every cycle the write address is increases with the size of the previously written block.

The number of bytes per function call can be written is determined by the maximum number of bytes

that fits in a request. Assuming a frame size of 256 bytes, this means that a maximum of 246 bytes can

be sent. If, in the future, use is made of a gateway function, this will need to be further bounded with 2

bytes per hop.

As a check, the so determined size of the data length is completed to the len field and passed to the

function. Then the data is added to the function in the open array data.

After programming, the data is compared with the programmed data and if they match, the command is

answered with ACK. In case of an incorrect programming action a NAK is forwarded.

Request:

Command OpCode Address # of bytes to write Data

0x5E 0x03 0x00000000 0x00 Byte[]

Reply (ACK):

Command

0x55

Read flash
For verification, it’s possible to read back the written data. Care must be taken to ensure that the size of

the requested data is not more than what can be answered in a frame. Although the data length is

limited by the device within the maximum frame, in case of use of a gateway it’s possible that this will

still overflow. In the response, the address and the data length are normally not changed, unless there is

an excessive length requested. Then it will be limited. The requested data is then added to the request

structure by means of the open data array.

With an incorrect length of the request frame an ERROR is reported back.

PENKO TP Protocol

21

Request:

Command OpCode Address # of bytes to read

0x5E 0x04 0x00000000 0x00

Reply:

Command OpCode Address # of bytes to read Data

0x5E 0x04 0x00000000 0x00 Byte[]

Boot application
After complete programming of the target application in the Flash ROM, this can be booted using this

command. Executing this command is confirmed by an ACK command. Starting the application is only

possible from the FBOOT-application. If this is not the case then a NAK command is given as an answer.

After the restart there can be requested if the target application is indeed active, using the query

application command.

Request:

Command OpCode

0x5E 0x05

Reply (ACK):

Command

0x55

Read application
This function can be used to ask information about which program is running. It can also be called to gain

the checksum of the target application, which will be calculated then.

When FBOOT-application is active, a 1 comes back into the application code field. If the target

application is active, a 0 comes back here. The checksum field contains the calculated checksum of the

target application.

Request:

Command OpCode

0x5E 0x06

Reply:

Command OpCode Checksum Application code

0x5E 0x06 0x0000 0x00

PENKO TP Protocol

22

Read flash type information
During programming an application, the programming program must take into account the sector

classification of the Flash ROM. This is of course possible on the basis of the code device which can be

requested with the ID command, but it’s more practical to use a universal method. This function is

developed for that purpose.

The principle of this method is that the programmer program first asks the device the size of the Flash-

ROM to be programmed. As there may be several different Flash-ROMs in a system, it’s important to

know from which address the information is desired. For this purpose, the following request is sent out.

The response contains information about the type and brand of the Flash ROM. This information can be

used for visual feedback to the user interface and for determining the application start address. The

brand and type codes correspond to the codes contained in the manufacturer's documentation. Some

examples are given in the table below.

8 bit 16 bit Type

0x0020 - Am29F010

0x00A4 - Am29F040

0x0051 0x2251 Am29F200T

0x0052 0x2252 Am29F200B

0x0023 0x2223 Am29F400T

0x00AB 0x22AB Am29F400B

On the basis of the identification code of the Flash ROM some additional details are sent in the reply; the

total size of the Flash ROM, the number of sectors and a table with the size of each sector.

With the aid of the table sector, it’s now possible to implement a correct programmer algorithm.

Attention must be paid if a block to write is going over the border of a sector. When this occurs, first a

flash erase of the sector should take place.

By using a sector table stored in the device instead of using a table in the programmer program it’s

possible to provide a device with a different type/brand flash ROM without the need to adapt the

programmer program.

Request:

Command OpCode Address

0x5E 0x07 0x00000000

Reply:

Command OpCode Address Manufacturer
id

Device
id

Flash size # of
sectors

Sector table

0x55 0x07 0x00000000 0x0000 0x0000 0x00000000 0x0000 0x00000000

PENKO TP Protocol

23

Read or program a serial number
This function is used to retrieve or set the serial number of the device. If the serial number is 0xFFFFFFFF,

it’s not yet programmed and it can be programmed in the device. A programmed number cannot be

replaced by another number. The build-up of the serial number consists of 8 BCD digits. From left to right

the production year and week number and the serial number can be read back. An example: serial

number is 0x14190001. This is the first device which is manufactured in week 19 of 2014.

Request:

Command OpCode

0x5E 0x08

Reply:

Command OpCode Serial

0x5E 0x08 0x00000000

Request:

Command OpCode Serial

0x5E 0x08 0x00000000

Reply (ACK):

Command

0x55

PENKO TP Protocol

24

5.12 Command code 0x64: Echo functions
This interface is designed to carry out connection and performance testing. The functionality of this

command is present in each device so that it can be used for checking of the connection, a type of PING

function.

The data sent to this interface is unmodified sent back from the slave to the master again. It’s therefore

possible with this interface to perform tests to determine the performance that the connection can take

out. The processing of this command requires a minimal effort on the side of the slave, so there can be

carried out a pure measurement on the link performance.

Request:

Command Data

0x64 Byte []

Reply:

Command Data

0x64 Byte []

PENKO TP Protocol

25

5.13 Command code 0x78: Controller interface
The controller interface provides all controller data. The interface is divided into the following blocks:

• System functions

• Input/output

• Extended registers

• Indicator

• Labels

5.13.1 System functions

System interface is for diagnostic purposes such as the recognition of the base interface and in-operation

status.

OpCode Description

0x00 Feature available

0x01 System diagnostics

PENKO TP Protocol

26

Check if the feature is available
The availability of the interface can be detected with this function. If present, a reply with the system

command ACK follows. If the interface is not present there is automatically answered with the ERROR

command.

Request:

Command OpCode

0x78 0x00

Reply (ACK):

Command

0x55

Get the system diagnostics
System diagnostics such as number of resets and operation time is retrieved with this command. The

structure of the command is shown below.

Request:

Command OpCode

0x78 0x01

Reply:

Command OpCode # of resets Alive time in seconds Up time in seconds

0x78 0x01 0x00000000 0x00000000 0x00000000

PENKO TP Protocol

27

5.13.2 Input/output

With the input / output interface, inputs, outputs and markers can be read. Markers can also be written.

Markers are outputs but without physical outputs.

OpCode Description

0x14 Get the I/O structure info

0x15 Read the I/O status

0x16 Set markers

0x17 Reset markers

Get the I/O structure info
The I/O parameters are retrieved with this command.

Request:

Command OpCode

0x78 0x14

Reply:

Command OpCode # of inputs # of outputs # of markers # of internal markers

0x78 0x14 0x0000 0x0000 0x0000 0x0000

Input offset Output offset Marker offset Internal marker offset Device offset

0x0000 0x0000 0x0000 0x0000 0x0000

Example

Get I/O structure info:

Request:

Command OpCode

0x78 0x14

Reply:

Command OpCode # of inputs # of outputs # of markers # of internal markers

0x78 0x14 0x0028 0x0028 0x0258 0x03E8

Input offset Output offset Marker offset Internal marker offset Device offset

0x0000 0x00C8 0x0190 0x2328 0x03E8

PENKO TP Protocol

28

Result:

Number of inputs 40

Number of outputs 40

Number of markers 600

Number of internal markers 1000

Input offset 0

Output offset 200

Marker offset 400

Internal marker offset 9000

Device offset 1000

Read the I/O status
The I/O status is retrieved with this command. Multiple groups of I/O can be requested.

Request:

Command OpCode Reserved # of tasks Start address Reserved # of bytes

0x78 0x15 0x00 0x00 0x0000 0x00 0x00

Reply:

Command OpCode Reserved # of tasks Start address Reserved # of bytes I/O data

0x78 0x15 0x00 0x00 0x0000 0x00 0x00 Byte []

For every task (# of tasks) a parameter field (start address + Reserved + # of bytes) has to be added to

the frame. The reply frame will show the full request frame extended with the I/O data of all tasks.

Examples

Read the status of inputs 1 - 8:

Request:

Command OpCode Reserved # of tasks Start address Reserved # of bytes
0x78 0x15 0x00 0x01 0x0000 0x00 0x01

Reply:

Command OpCode Reserved # of tasks Start address Reserved # of bytes I/O data
0x78 0x15 0x00 0x01 0x0000 0x00 0x01 0x01

The I/O data shows that input 1 is high (I/O data = 0x01).

PENKO TP Protocol

29

Read the status of outputs 1 - 8:

The outputs have an offset of 200 according to the I/O structure as shown above. The start address has

to be entered as number of bytes. 200 = 25 bytes. 25 = hex 0x19.

Request:

Command OpCode Reserved # of tasks Start address Reserved # of bytes
0x78 0x15 0x00 0x01 0x0019 0x00 0x01

Reply:

Command OpCode Reserved # of tasks Start address Reserved # of bytes I/O data
0x78 0x15 0x00 0x01 0x0019 0x00 0x01 0x03

The I/O data shows that output 1 and 2 are high (I/O data = 0x03).

Read the status of markers 401 - 408:

The markers have an offset of 400 according to the I/O structure as shown above. The start address has

to be entered as number of bytes. 400 = 50 bytes. 50 = hex 0x32.

Request:

Command OpCode Reserved # of tasks Start address Reserved # of bytes
0x78 0x15 0x00 0x01 0x0032 0x00 0x01

Reply:

Command OpCode Reserved # of tasks Start address Reserved # of bytes I/O data
0x78 0x15 0x00 0x01 0x0032 0x00 0x01 0x07

The I/O data shows that markers 401, 402 and 403 are high (I/O data = 0x07).

PENKO TP Protocol

30

Read the status of markers 401 - 416:

The same request is used as for marker 401 - 408, only in this case the returned I/O data is 2 bytes.

Request:

Command OpCode Reserved # of tasks Start address Reserved # of bytes
0x78 0x15 0x00 0x01 0x0032 0x00 0x02

Reply:

Command OpCode Reserved # of tasks Start address Reserved # of bytes I/O data I/O data
0x78 0x15 0x00 0x01 0x0032 0x00 0x01 0x07 0x01

The first I/O data byte (0x07) shows that markers 401, 402 and 403 are high. The second I/O data byte

(0x01) shows that marker 409 is high.

Read the status of outputs 1 - 8 and markers 401 - 408:

Two requests are made in this case. Therefor set # of tasks to 2. The first task (Start address + Reserved +

of bytes) is setup to read the status of outputs 1 - 8. The second task is setup to read the status of

markers 401 - 408.

Request:

Command OpCode Reserved # of
tasks

Start
address

Reserved # of
bytes

 Start
address

0x78 0x15 0x00 0x02 0x0019 0x00 0x01 0x0032

Reserved # of bytes

0x00 0x01

Reply:

Command OpCode Reserved # of
tasks

Start
address

Reserved # of
bytes

 Start
address

0x78 0x15 0x00 0x02 0x0019 0x00 0x01 0x0032

The first I/O data byte (0x03) shows that output 1 and 2 are high. The second I/O data byte (0x07) shows

that markers 401, 402 and 403 are high.

Reserved # of bytes I/O data I/O data
0x00 0x01 0x03 0x07

PENKO TP Protocol

31

Set markers
The markers are set with this command. For successful processing, the command is answered with the

system command ACK.

Request:

Command OpCode Reserved # of markers Marker

0x78 0x16 0x00 0x00 0x0000

Reply (ACK):

Command

0x55

For every marker (# of markers) a marker address (0x0000) has to be added to the frame.

Examples

Set marker 401 (hex 0x0191):

Request:

Command OpCode Reserved # of markers Marker
0x78 0x16 0x00 0x01 0x0191

Reply (ACK):

Command
0x55

Marker 401 is set.

Set markers 401 and 402 (hex 0x0191 and 0x0192):

Request:

Command OpCode Reserved # of markers Marker Marker
0x78 0x16 0x00 0x02 0x0191 0x0192

Reply (ACK):

Command
0x55

Markers 401 and 402 are set.

PENKO TP Protocol

32

Reset markers
The markers are reset with this command. After successful processing, the command is answered with

the system command ACK.

Request:

Command OpCode Reserved # of markers Marker

0x78 0x17 0x00 0x00 0x0000

Reply (ACK):

Command

0x55

For every marker (# of markers) a marker address (0x0000) has to be added to the frame.

Examples

Reset marker 401 (hex 0x0191):

Request:

Command OpCode Reserved # of markers Marker
0x78 0x17 0x00 0x01 0x0191

Reply (ACK):

Command
0x55

Marker 401 is reset.

Reset markers 401 and 402 (hex 0x0191 and 0x0192):

Request:

Command OpCode Reserved # of markers Marker Marker
0x78 0x17 0x00 0x02 0x0191 0x0192

Reply (ACK):

Command
0x55

Markers 401 and 402 are reset.

PENKO TP Protocol

33

5.13.3 Extended registers

With this interface, access is obtained to extended registers that can be read and written. The extended

registers are 32 bit signed numbers. The registers 1 – 100 are battery backed up so they will always store

their content.

OpCode Description

0x1E Get register info

0x1F Read registers

0x20 Write registers

Get register info
The Extended registers parameters are retrieved with this command.

Request:

Command OpCode

0x78 0x1E

Reply:

Command OpCode # of registers

0x78 0x1E 0x0000

Read registers
The Extended registers are accessed with this command. Multiple groups extended registers can be

accessed through this structure.

Request:

Command OpCode Reserved # of tasks Start address Reserved # of registers

0x78 0x1F 0x00 0x00 0x0000 0x00 0x00

Reply:

Command OpCode Reserved # of
tasks

Start
address

Reserved # of
registers

Register
data

0x78 0x1F 0x00 0x00 0x0000 0x00 0x00 Byte []

For every task (# of tasks) a parameter field (start address + Reserved + # of registers) has to be added to

the frame. The reply frame will show the full request frame extended with the register data of all tasks.

PENKO TP Protocol

34

Examples

Read extended register 1:

Request:

Command OpCode Reserved # of tasks Start address Reserved # of registers
0x78 0x1F 0x00 0x01 0x0000 0x00 0x01

Reply:

Command OpCode Reserved # of
tasks

Start
address

Reserved # of
registers

Register
data

0x78 0x1F 0x00 0x01 0x0000 0x00 0x01 0x00000001

Extended register 1 has a value of 1.

Read extended registers 1 and 2:

Request:

Command OpCode Reserved # of tasks Start address Reserved # of registers
0x78 0x1F 0x00 0x01 0x0000 0x00 0x02

Reply:

Command OpCode Reserved # of tasks Start address Reserved # of registers
0x78 0x1F 0x00 0x01 0x0000 0x00 0x02

Register data Register data

0x00000001 0x00000002

Extended register 1 has a value of 1 and extended register 1 has a value of 2.

PENKO TP Protocol

35

Read extended registers 1 and 11:

Request:

Command OpCode Reserved # of tasks Start address Reserved # of registers
0x78 0x1F 0x00 0x02 0x0000 0x00 0x01

Start address Reserved # of registers

0x000A 0x00 0x01

Reply:

Command OpCode Reserved # of tasks Start address Reserved # of registers
0x78 0x1F 0x00 0x01 0x0000 0x00 0x01

Start address Reserved # of registers Register data Register data
0x000A 0x00 0x01 0x00000001 0x00000011

Extended register 1 has a value of 1 (0x00 00 00 01) and extended register 11 has a value of 17 (0x00 00

00 11).

PENKO TP Protocol

36

Write registers
The Extended registers are written with this command. After successful processing, the command is

answered with the system command ACK.

Request:

Command OpCode Register Data

0x78 0x20 0x0000 0x00000000

Reply (ACK):

Command

0x55

Examples

Write to extended register 1 (first register is address 0x0000) value 123 (hex 0x0000007B):

Request:

Command OpCode Register New value
0x78 0x20 0x0000 0x0000007B

Reply (ACK):

Command
0x55

Extended register 1 now has the value 123.

Write to extended register 2 (address 0x0001) value 2400 (hex 0x00000960):

Request:

Command OpCode Register New value
0x78 0x20 0x0001 0x00000960

Reply (ACK):

Command
0x55

Extended register2 now has value 2400.

PENKO TP Protocol

37

5.13.4 Indicator

This interface provides access to the indicator registers and is read only. Indicator registers are both

internal and external scales connected to the device. Each register represents the indicator display value

including formatting and status information.

OpCode Description

0x28 Get indicator info

0x29 Read indicator

Get indicator info
The indicator registers parameters are retrieved with this command. Device offset is the logical

numbering offset within a device. For example, indicators can be numbered starting at 100 instead of 1.

Communication numbering always starts from 0.

Request:

Command OpCode

0x78 0x28

Reply:

Command OpCode # of indicators Device offset

0x78 0x28 0x0000 0x0000

Read indicator
The indicator registers are accessed with this command. Multiple groups of indicator registers can be

requested through this structure. The field parameter indicates the number of structures.

Request:

Command OpCode Reserved # of tasks Start address Reserved # of indicators

0x78 0x29 0x00 0x00 0x0000 0x00 0x00

Reply:

Command OpCode Reserved # of tasks Start address Reserved # of indicators Indicators

0x78 0x29 0x00 0x00 0x0000 0x00 0x00 Byte []

For every task (# of tasks) a parameter field (start address + Reserved + # of indicators) has to be added

to the frame. The reply frame will show the full request frame extended with the indicator data of all

tasks.

PENKO TP Protocol

38

The 32 bit Indicator field is constructed as follows:

8 bit status 24 bit signed indicator value

Status bits:

 Status bits Description

0x00 No decimal point position

0x01 Decimal point “00000.0”

0x02 Decimal point “0000.00”

0x03 Decimal point “000.000”

0x04 Decimal point “00.0000”

0x05 Decimal point “0.00000”

0x06 Decimal point “.000000”

0x07 Format mask

0x08 Indicator tare active

0x10 Indicator stable active

0x20 Indicator zero range

0x40 Indicator error

0x80 indicator avail, value is valid

Examples

Read indicator 1:

Request:

Command OpCode Reserved # of tasks Start address Reserved # of indicators
0x78 0x29 0x00 0x01 0x00 00 0x00 0x01

Reply:

Command OpCode Reserved # of
tasks

Start
address

Reserved # of
indicators

Indicator

0x78 0x29 0x00 0x01 0x00 00 0x00 0x01 0xBA002710

The first byte (0xBA) indicates the status.

“B” means that the indicator is in zero range, indicator stable is active and the indicator is available, the

value is valid.

“A” means that the decimal point is “0000.00” and the indicator tare is active.

The next three bytes indicate the weight value. 0x00 27 10 so the value is 10000.

PENKO TP Protocol

39

Read indicator 1 and 2:

Request:

Command OpCode Reserved # of tasks Start address Reserved # of indicators
0x78 0x29 0x00 0x01 0x0000 0x00 0x02

Reply:

Command OpCode Reserved # of tasks Start address Reserved # of indicators
0x78 0x29 0x00 0x01 0x0000 0x00 0x02

Indicator Indicator

0xBA002710 0xBA00137E

First indicator:

The first byte (in this case 0xBA) indicates the status.

“B” means that the indicator is in zero range, indicator stable is active and the indicator is available, the

value is valid.

“A” means that the decimal point is “0000.00” and the indicator tare is active.

The next three bytes indicate the weight value. 0x00 27 10 so the value is 10000.

Second indicator:

The first byte (in this case 0xBA) indicates the status.

“B” means that the indicator is in zero range, indicator stable is active and the indicator is available, the

value is valid.

“A” means that the decimal point is “0000.00” and the indicator tare is active.

The next three bytes indicates the weight value. 0x00 13 7E so the value is 4990.

PENKO TP Protocol

40

Read indicator 1 and 3:

Request:

Command OpCode Reserved # of tasks Start address Reserved # of indicators
0x78 0x29 0x00 0x02 0x0000 0x00 0x01

Start address Reserved # of indicators

0x0002 0x00 0x01

Reply:

Command OpCode Reserved # of tasks Start address Reserved # of indicators
0x78 0x29 0x00 0x02 0x0000 0x00 0x01

Start address Reserved # of indicators Indicator Indicator

0x0002 0x00 0x01 0xBA002710 0xBA00137E

First indicator:

The first byte (in this case 0xBA) indicates the status.

“B” means that the indicator is in zero range, indicator stable is active and the indicator is available, the

value is valid.

“A” means that the decimal point is “0000.00” and the indicator tare is active.

The next three bytes indicate the weight value. 0x00 27 10 so the value is 10000.

Second indicator:

The first byte (in this case 0xBA) indicates the status.

“B” means that the indicator is in zero range, indicator stable is active and the indicator is available, the

value is valid.

“A” means that the decimal point is “0000.00” and the indicator tare is active.

The next three bytes indicates the weight value. 0x00 13 7E so the value is 4990.

PENKO TP Protocol

41

5.13.5 Labels

This interface gives access to the labels. Labels are text fields with a fixed length and are used for printer

layouts and external screens.

OpCode Description

0x32 Get label info

0x33 Load labels from flash

0x34 Save labels to flash

0x35 Read labels from device

0x36 Write labels to device

Get label info
The structure of the labels is retrieved with this command.

Request:

Command OpCode

0x78 0x32

Reply:

Command OpCode Max label width Max # of labels

0x78 0x32 0x0000 0x0000

Load labels from flash
With this command the labels are loaded from the device flash memory and are placed in the device

working memory. A successful operation is replied with an ACK command.

Request:

Command OpCode

0x78 0x33

Reply (ACK):

Command

0x55

PENKO TP Protocol

42

Save labels to flash
With this command the labels are read from the device working memory and saved to the device flash

memory. A successful operation is replied with an ACK command.

Request:

Command OpCode

0x78 0x34

Reply (ACK):

Command

0x55

Read labels from device
With this command one or more labels are read from the device. Every label is null terminated.

Request:

Command OpCode Start label # of labels

0x78 0x35 0x0000 0x0000

Reply (ACK):

Command OpCode Start label # of labels Labels

0x78 0x35 0x0000 0x0000 Byte []

Examples

Read the first two labels (first label is address 0x0000):

Request:

Command OpCode Start label # of labels

0x78 0x35 0x0000 0x0002

Reply (ACK):

Command OpCode Start label # of labels Label Label

0x78 0x35 0x0000 0x0002 0x544558542020203100 0x544558542020203200

Label 1 = 0x544558542020203100 = TEXT 1 (the “00” is the null termination)

Label 2 = 0x544558542020203200 = TEXT 2 (the “00” is the null termination)

PENKO TP Protocol

43

Write labels to device
With this command one or more labels are written to the device working memory. A successful

operation is replied with an ACK command. Every label shorter than the maximum number of character

must be null terminated.

Request:

Command OpCode Start label # of labels Labels

0x78 0x36 0x0000 0x0000 Byte []

Reply (ACK):

Command

0x55

Examples

Write PENKO to label 5 (address 0x0004):

PENKO in hex = 0x50 45 4E 4B 4F + null termination = 0x50454E4B4F00

Request:

Command OpCode Start label # of labels Labels

0x78 0x36 0x0004 0x0001 0x50454E4B4F00

Reply (ACK):

Command

0x55

PENKO TP Protocol

44

5.14 Command code 0xB4: PDI functions
See the PENKO PDI Protocol document, available on www.penko.com

http://www.penko.com/

PENKO TP Protocol

45

About PENKO
At PENKO Engineering we specialize in weighing. Weighing is inherently chemically correct, independent of consistency, type or temperature of the
raw material. This means that weighing any kind of material guaranties consistency and thus, it is essential to sustainable revenue generation in
any industry. As a well-established and proven solution provider, we strive for the ultimate satisfaction of custom design and/or standard
applications, increasing your efficiencies and saving you time, saving you money.

Whether we are weighing raw materials, components in batching, ingredients for mixing or dosing processes, - or weighing of static containers and
silos, or - in-motion weighing of railway wagons or trucks, by whatever means required during a process, we are essentially forming vital linkages
between processes and businesses, anywhere at any time. We design, develop and manufacture state of the art technologically advanced systems
in accordance with your strategy and vision. From the initial design brief, we take a fresh approach and a holistic view of every project, managing,
supporting and/or implementing your system every step of the way. Curious to know how we do it? www.penko.com

Certifications

PENKO sets high standards for its products and product
performance which are tested, certified and approved by
independent expert and government organizations to ensure
they meet – and even – exceed metrology industry guidelines. A
library of testing certificates is available for reference on:
http://penko.com/nl/publications_certificates.html

PENKO Professional Services

PENKO is committed to ensuring every system is installed, tested,
programmed, commissioned and operational to client specifications. Our
engineers, at our weighing center in Ede, Netherlands, as well as our
distributors around the world, strive to solve most weighing-system issues
within the same day. On a monthly basis PENKO offers free training classes to
anyone interested in exploring modern, high-speed weighing instruments and
solutions. Training sessions on request: www.penko.com/training

PENKO Alliances

PENKO’s worldwide network: Australia, Brazil, China, Denmark, Germany,
Egypt, Finland, France, India, Italy, Netherlands, Norway, Poland, Portugal,
Slovakia, Spain, Syria, Turkey, United Kingdom, South Africa, Slovakia Sweden
and Switzerland, Singapore.
A complete overview you will find on: www.penko.com/dealers

PENKO Engineering B.V. ▪ Schutterweg 35, NL 6718XC Ede ▪ Tel +31 (0) 318525630 ▪ Fax +31 (0) 31852971 ▪ info@penko.com

Web ▪ www.penko.com ▪ Copyright © 2014 ETC All rights reserved. 7600L1106 EN PENKO TP Protocol R6

http://www.penko.com/
mailto:info@penko.com
http://www.penko.com/

