
PENKO Engineering B.V.

Your Partner for Fully Engineered Factory Solutions

Manual: 1020 FMD

IMPORTANT SAFETY INFORMATION

READ THIS PAGE FIRST!

PENKO Engineering B.V. manufactures and tests its products to meet all applicable national and international standards. It is vital that this instrument is correctly installed, used, and maintained to ensure it continues to operate to its optimum specification.

The following instructions must be adhered to and incorporated into your safety program when installing, using, and maintaining PENKO products. Failure to follow the recommended instructions can affect the system's safety and may increase the risk of serious personal injury, property damage, damage to this instrument and may invalidate the product's warranty.

- Read the instructions fully prior to installing, operating, or servicing the product. If this Instruction Manual is not the correct manual for the PENKO product you are using, call 0031(0)318-525630 for a replacement copy. Keep this Instruction Manual in a safe place for future reference.
- If you do not fully understand these instructions, contact your PENKO representative for clarification.
- Pay careful attention to all warnings, cautions, and instructions marked on and supplied with the product.

- Inform and educate your personnel about the correct installation, operation, and maintenance procedures for this product.
- Install your equipment as specified in the installation instructions of the appropriate Instruction Manual and as per applicable local and national codes. Connect all products to the proper electrical sources.
- To ensure correct performance, use qualified personnel to install, operate, update, program, and maintain the product.
- When replacement parts are required, ensure that qualified technicians use replacement parts specified by PENKO. Unauthorized components and procedures can affect the product's performance and may affect the continued safe operation of your processes. The use of non-specified 'look-alike' substitution parts may result in the risk of fire, electrical hazards, or improper operation.
- Ensure that all equipment doors are closed and protective covers are in place, except when maintenance is being performed by qualified persons, to prevent electrical shock and personal injury.

WARNING

ELECTRICAL SHOCK HAZARD

Installing cable connections and servicing this instrument require access to shock hazard level voltages which can cause death or serious injury.

Disconnect separate or external power sources to relay contacts before commencing any maintenance.

The electrical installation must be carried out in accordance with CE directions and/or any other applicable national or local codes.

Unused cable conduit entries must be securely sealed by non-flammable blanking plates or blind grommets to ensure complete enclosure integrity in compliance with personal safety and environmental protection requirements.

To ensure safety and correct performance this instrument must be connected to a properly grounded, three-wire power source.

Proper relay use and configuration is the responsibility of the user.

Do not operate this instrument without the front cover being secured. Refer any installation, operation or servicing issues to qualified personnel.

WWW.PENKO.COM

PENKO Engineering B.V. is an ETC Company

Email: info@PENKO.com

Table of Contents

In	trodu	uction.		.6
	In the box			.6
	Need	ded fo	r use	.6
1	O۷	verviev	V	.7
2	Co	nnecti	ions	.9
	2.1	Pow	ver supply	.9
	2.2	Load	d cell	LO
	2.3	USB		11
	2.4	Ana	log output	L2
	2.5	Digit	tal inputs	13
	2.6	Digit	tal outputs	L4
	2.7	Ethe	ernet	15
	2.9	CAN	Bus	16
	2.10	Prof	ibus	L7
	2.11	RS2	32/RS422	18
3	Di	splay a	and keypad	20
4	PC	applic	cations	24
	4.1	PDI	Client	24
	4.2	Pi M	lach II	25
5	Fir	rst use		26
	5.1	Usin	ng the configuration software	26
	5.2	Usin	ng the device	39
6	Fu	ıll setu	p	16
	6.1	Live		17
	6.2	Syst	em	17
	6.3	Syst	em Setup	18
	6.3	3.1	Service	18
	6.3	3.2	Indicator	18

	6.	3.3	Communication	61
	6.	3.4	Digital inputs	68
	6.	3.5	Digital outputs	68
	6.	3.6	Analog output	71
	6.	3.7	Passwords	73
	6.	3.8	Screen	75
	6.	3.9	Clock	79
	6.	3.10	Printer	80
	6.	3.11	Factory recall	84
6	5.4	Con	itrol	85
6	5.5	Acc	ess	85
7	Α	libi Me	mory and Event Log	86
7	7.1	Alib	i Memory	86
7	7.2	Eve	nt Log	91
8	Fi	rmwar	e update	95
8	3.1	Eth	ernet	95
8	3.2	USE	3	96
9	В	ackup	and restore	98
g	9.1	Вас	kup	98
g	9.2	Res	tore	98
g	9.3	Pro	gress	98
10		Stand	ard factory settings	100
11		Error	codes	101
12		Specif	ications	102
Ind	ex.			104
Ар	pen	ıdix I -	Menu structure	106
Δn	nen	dix II -	Communication protocols	109

Introduction

The PENKO 1020 FMD is a compact comprehensive Force Measurement Device.

In the box

The box contains the following items:

- 1 x 1020 FMD device
- 1 x rubber ring for mounting purpose
- 2 x clip for mounting purpose
- 1 x connector for load cell connection
- 1 x quick start manual

Needed for use

To use the 1020 FMD the following items are needed:

- Class 2 or Limited Power Source, rate 18 32 VDC, 0.4A@24VDC
- Load cell / Torque sensor
- USB A-B cable for configuration with PC software

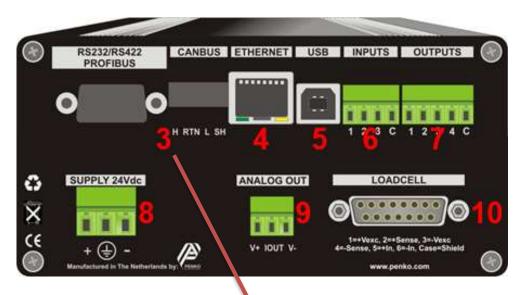
For easy configuration, two PC applications are available as download.

PDI Client

PDI Client is a cross-platform freeware program for easy monitoring and configuration of PENKO devices. PDI Client is compatible with the PENKO FLEX series, FLEX2100 series, 1020 series, 5GM700/800 series and RKDRIA700 series. Only USB communication is supported. The minimum required Java fluntime Environment is version 1.8.0. Installation guide and USB drivers for Windows are included.

DOWNLOAD SOFTWARE

Pi Mach II


Pt Mach It is a comprehensive freeware program for monitoring and configuration of PENKO devices. Available features are firmware update manager, manage tool for all parameters, oscilloscope functionality to explore filters and programming and visualization tooling for the PENKO FLEX and FLEX2100 series. USB drivers are included in the installer.

DOWNLOAD SOFTWARE

1 Overview

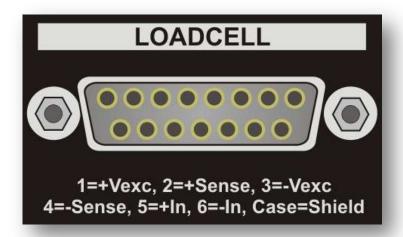
Option 1:

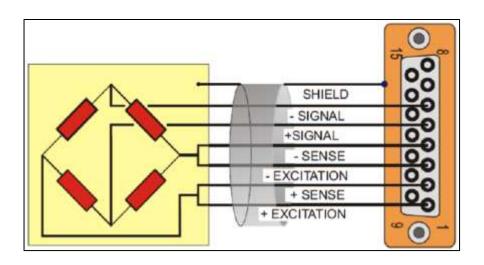
Number	Description
1	TFT display 320 x 240
2	Keypad
3	OPTION: None Serial + CAN bus Profibus
4	Ethernet connection
5	USB connection
6	Digital inputs (3)
7	Digital outputs (4)
8	24VDC power supply
9	OPTION: Analog output
10	Load cell connection
11	RS232/RS422 connection
12	CAN bus connection
13	Profibus connection
14	Bus termination for Profibus

2 Connections

This chapter describes the connections of the 1020 FMD.

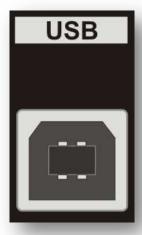
Before connecting the device to a computer using USB, make sure the USB driver is installed.


2.1 Power supply



Power the device using a Class 2 or Limited Power Source, rate 18 – 32 VDC, 0.4A@24VDC

2.2 Load cell



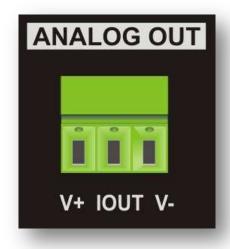
Property	Description
Wiring	With sense
Type of sense	Passive
Excitation voltage	5 VDC
Sensitivity	0,1 μV/d
Selectable ranges	1 mV/V 1,5 mV/V 2 mV/V 2,5 mV/V 3 mV/V
Input voltage @3mV/V	-16 mV to 16 mV
A/D Conversion speed	1600/s
Max. load cell impedance	1200 Ω
Min. Load cell impedance	43,75 Ω
Max. no. of load cells 350 Ω	8
Max. no. of load cells 1000 Ω	22

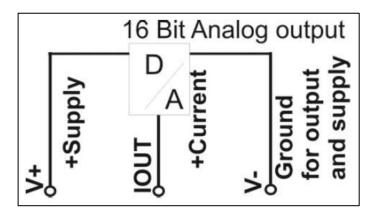
2.3 USB

Connect the device to a computer using an A-B USB cable. The USB interface is used for communication with PENKO configuration software.

Before connecting the device to a computer using USB, make sure the USB driver is installed. The driver is included in the PENKO configuration PC applications, see chapter PC applications.

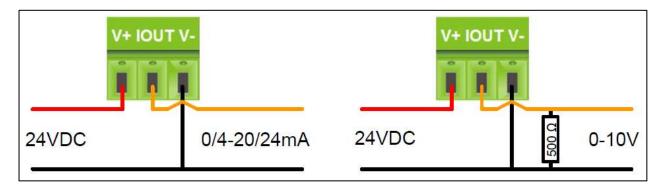
Only 1 protocol is supported over USB:


Protocol	Description
Penko TP	PENKO protocol used for configuration software



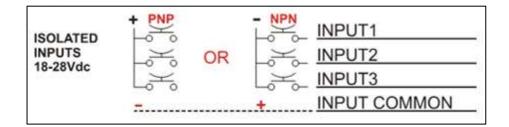
The USB interface cannot be used for printers, memory sticks etc.

2.4 Analog output

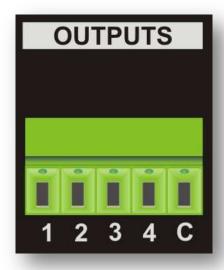


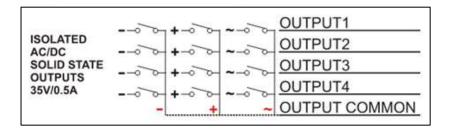
The analog output can be used as mA output in the following ranges and react to an indicator value.

Range	Description
RAW	16 bit DAC value
0 - 20 mA	The minimum and maximum output of the analog output
0 - 24 mA	The minimum and maximum output of the analog output
4 - 20 mA	The minimum and maximum output of the analog output
4 - 24 mA	The minimum and maximum output of the analog output


The analog output can also be used as 0 - 10 V output when a 500 ohm resistor is placed over the output and the range is set to 0-20mA.

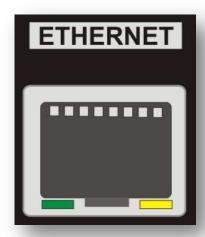
2.5 Digital inputs




The device has 3 digital. The inputs can be switched PNP or NPN with 18 - 28 VDC.

The inputs can be programmed as Hold, Peak Hold, Key Lock etc.

2.6 Digital outputs

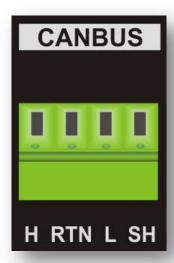


The device has 4 digital outputs that can be used for an AC and DC power circuit up to 35V/0.5A.

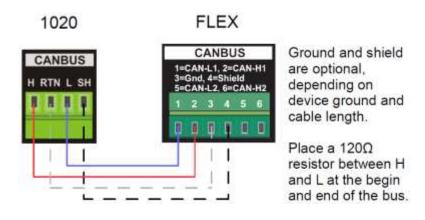
The outputs can be programmed as setpoints with a programmable hysteresis and function like Track, Peak, Valley etc.

2.7 Ethernet

The Ethernet connection can be used for communication with Pi Mach II and for the following protocols:


Protocol	Description
BusLink	PENKO Protocol to connect the device to a PENKO FLEX controller
EthernetIP	Protocol to connect to SCADA/PLC
Omron FINS	Protocol to connect to SCADA/PLC
Modbus TCP*	Protocol to connect to SCADA/PLC
Penko TP	PENKO protocol used for configuration software
ASCII**	PENKO protocol for ASCII communication

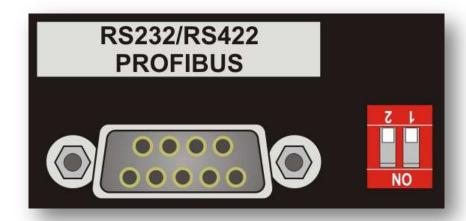
^{*} Automatically enabled when both RS232 and RS422 are not set to Modbus

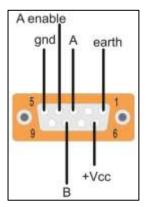

^{**} Port 23 - automatically enabled when both RS232 and RS422 are not set to ASCII

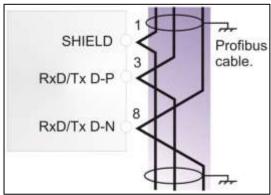
2.9 CAN Bus

The CAN Bus can be used for the PENKO BusLink protocol, a protocol to connect the 1020 FMD to a PENKO FLEX controller.

Connection	Description
Н	CAN High
RTN	Ground
L	CAN Low
SH	Shield




The CANopen protocol is not available

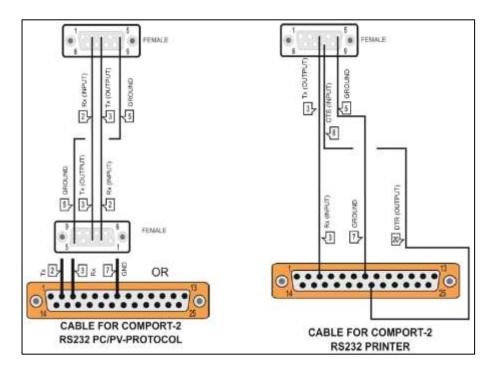


2.10 Profibus

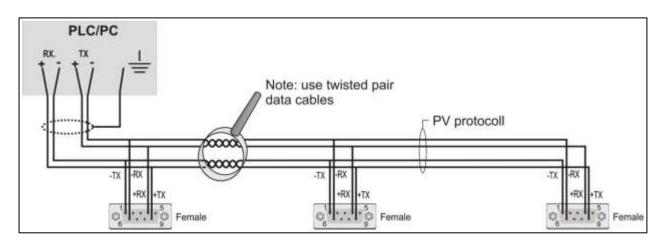
Profibus is available on the option board.

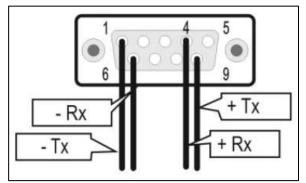
Pin No.	Symbol	Name	Description
1		SHIELD	Shield protective ground
2		RP	Reserved for power
3	B/B	RxD/TxD-P	Receive/Transmit data P
4		CNTR-P	Control P
5	C/C	DGND	Data ground
6		VP	Voltage plus
7		RP	Reserverd for power
8	A/A	RxD/TxD-N	Receive/Transmit data N
9		CNTR-N	Control N

2.11 RS232/RS422



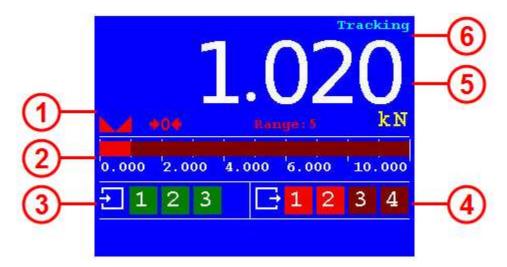
RS232 and RS422 are available on the option board and can be used for the following protocols:


Protocol	Description
Printer	PENKO protocol to connect a ASCII/plain-text printer
ASCII	PENKO protocol for ASCII communication
NPV Slave	PENKO Protocol used for follow displays
Modbus-RTU	Protocol to connect to SCADA/PLC
Modbus-ASCII	Protocol to connect to SCADA/PLC



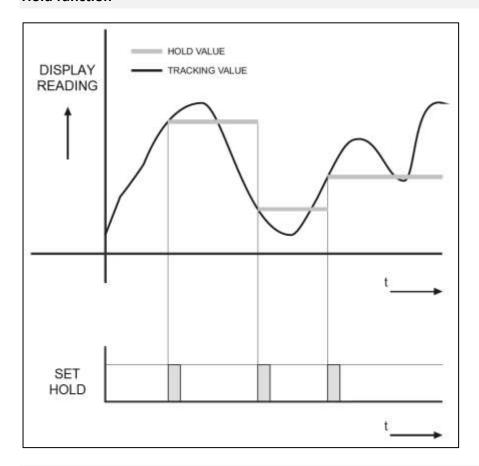
RS232 communication:

RS422 communication with multiple devices:

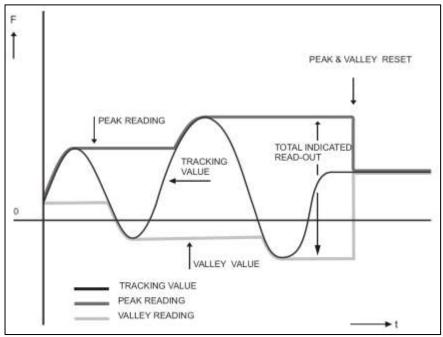


3 Display and keypad

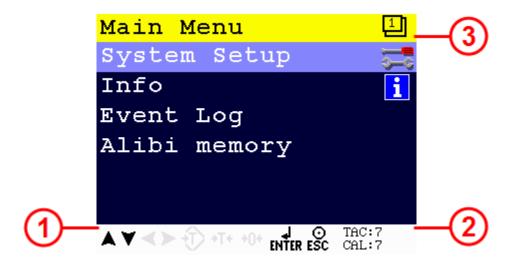
The display contains the following indications:


Number	Description
1	Indicator in stable range [] Zero active [] Range/Interval active
2	Bar graph indication
3	Digital input active indication (3 inputs)
4	Digital output active indication (4 outputs)
5	Measured value
6	Type of value shown on the display (Tracking, Hold, T.I.R, Peak, Valley) *

* Display v	* Display value		
Tracking	Tracking value. The display follows the input signal.		
Hold	Hold value. The hold value is stored every time the zero button is pressed in hold mode, and every time the input, programmed as hold, is high.		
Peak	Peak hold value. This is the highest measured value.		
Valley	Valley hold value. This is the lowest measured value.		
T.I.R.	Total Indicated Readout value. The difference between the peak hold and valley		
	hold value.		


See next page for examples.

Hold function



Peak, Valley and T.I.R. function

The display indications in menu mode:

Number	Description	
1	Active buttons for current menu item	
2	TAC and CAL code*	
3	Menu level	

* TAC and CAL code

TAC stands for Traceable Access Code. A number of settings are only available after entering this code. When these settings are changed, the TAC is incremented with 1.

CAL stands for CALibration code. The calibration settings are only available after entering this code. When the calibration settings are changed, the CAL is incremented with 1.

The keys have the following functions:

Tracking / Hold

Toggle between Tracking mode and Hold mode.

Peak Hold

Show Peak Hold mode.

Enter / Menu

Adjust levels. Press > 2 seconds to enter configuration menu. In menu mode, press to confirm setting.

Zero

Press to set tare/zero. Press again to reset tare/zero. In Hold mode, press to set hold value. In Peak/Valley/T.I.R mode, press to clear the stored value.

Print / Escape

Press to cancel or step back one menu item. Press from start screen to print.

Up / Increase value

From start screen, press to show T.I.R. value on the display.

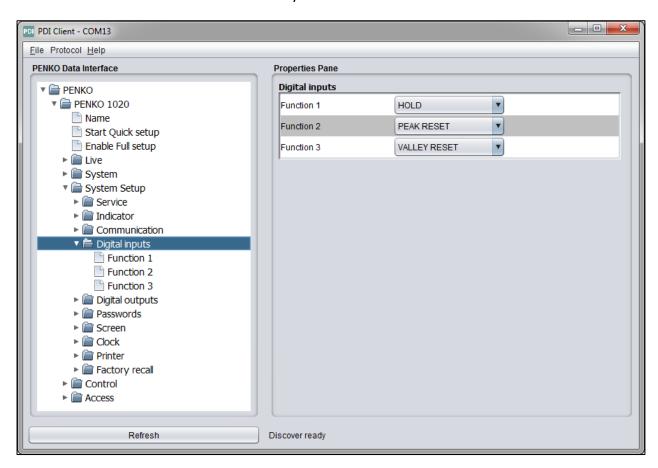
Down / Decrease value

From start screen, press to show valley hold value on the display.

Left / Change position of cursor

Right / Change position of cursor

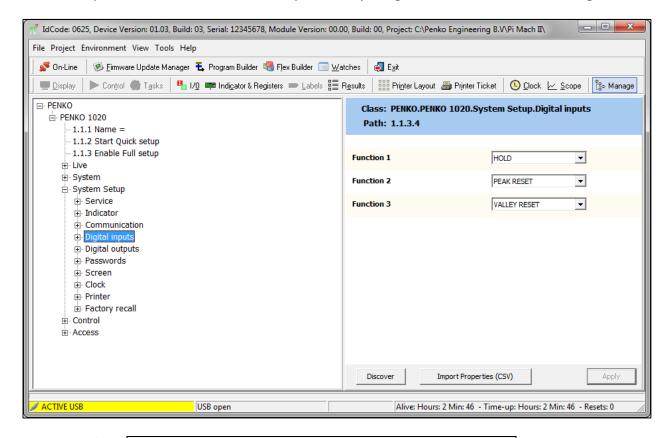
4 PC applications


For easy configuration and monitoring, two PC applications are available as download. PDI Client and Pi Mach II. In the following chapters, Pi Mach II is used to explain the 1020 FMD functionality.

www.penko.com/software

4.1 PDI Client

PDI client is a small cross-platform application that only works with USB communication. It can run on any operating system that runs Java Runtime Environment (JRE). All device properties are shown in a tree structure and can easily be edited.



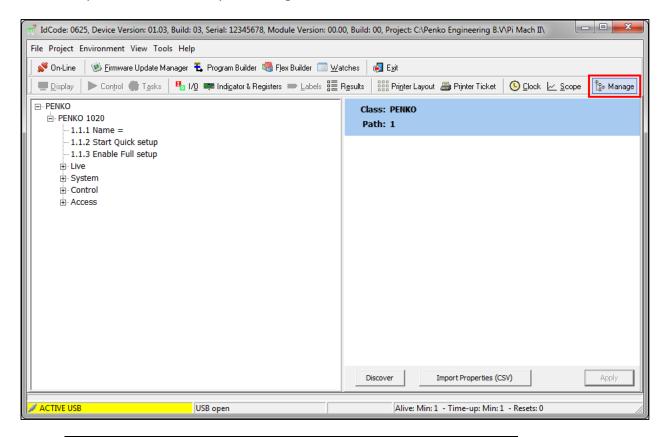
USB driver and user manual are included in the download

4.2 Pi Mach II

Pi Mach II is a comprehensive Windows application that works with USB and Ethernet communication and has more functionality compared to PDI Client. The tree structure configuration of PDI Client is available in this program. Other features are backup and restore, firmware updates and a build in oscilloscope to analyze signals for different filter settings.

USB driver and user manual are included in the download

5 First use

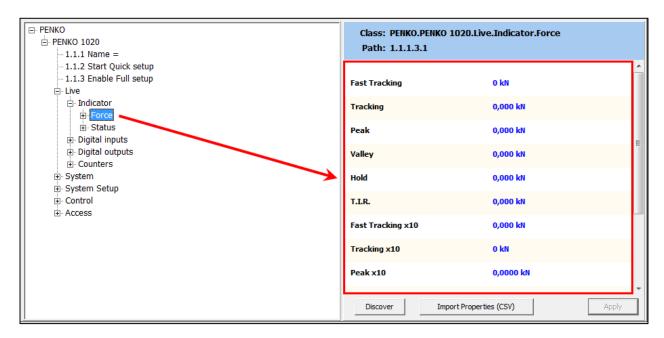

For first use, the following settings are important:

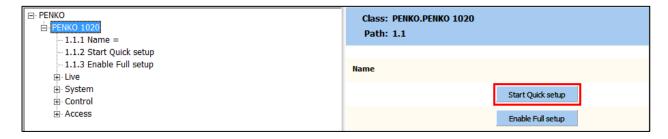
- Unit indication
- Decimal point position
- Step size
- Maximum load
- Calibration
- Communication

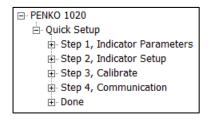
This chapter describes how to adjust these settings with the configuration software and on the device itself.

5.1 Using the configuration software

Make sure Pi Mach II and the USB driver are installed properly according to the Pi Mach II user manual. Open Pi Mach II and open Manage.

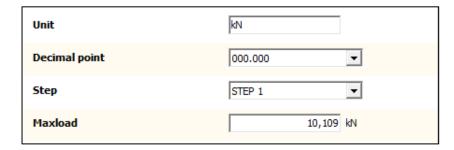



These configurations can also be made with the PDI Client software


The left screen shows the device configuration in a tree structure. The right screen shows the properties of the selected item in the left screen. For example the live force information:

In the tree, select **PENKO 1020**. The properties of this tree node are shown in the right screen.

The first use settings are available under **Start Quick setup**



To confirm a setting press enter or click the Apply button

Select Step1, Indicator Parameters

Unit

Set the unit of measurement, for example kN or N. This will be shown everywhere the measured force is displayed or printed.

Decimal point

Select the position of the decimal point. This setting will be used everywhere the measured force is displayed or printed.

Available options	
000000	
0.0000	
0000.00	
000.000	
00.0000	
0.00000	

Step

Select the step size. This setting defines the scaled parts of the force value. The display value will be rounded to the nearest value with a valid step size. Available options:

Available options	
1	
2	
5	
10	
20	
50	
100	
200	

→ Example:

Measured value is 2005 kN.

Step size	Displayed value
1	2005
2	2006
5	2005
10	2010
20	2000
50	2000
100	2000
200	2000

Maxload

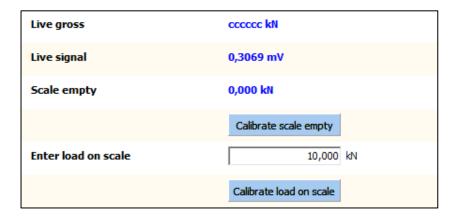
Set the force the indicator will use as maximum. If the measured force is higher than the maximum load, the display will show ======

More weigher parameters are available in the Full setup

Select Step2, Indicator setup

Application

A number of predefined configurations with specific filter settings are available. These configurations don't affect the settings made in step 1. They only affect the filter settings.


When setting up an installation, select the appropriate configurations and start fine tuning it with the options available in the Full setup.

Filter settings are explained in the Full setup chapter

Select Step 3, Calibrate

With this step a two-point calibration can be made. The unit indication and decimal point position are a result of the settings in step 1.

Live gross

This shows the gross indicator value. When no calibration is available this will show **ccccc**

Live signal

This shows the voltage generated by the connected load cell or force sensor.

Scale empty

The calibration of the "zero" point.

Make sure the load cell or force sensor is not loaded and is stable.

Click Calibrate scale empty and the zero point is saved.

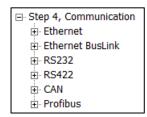
Enter load on scale

The calibration of the "gain" point.

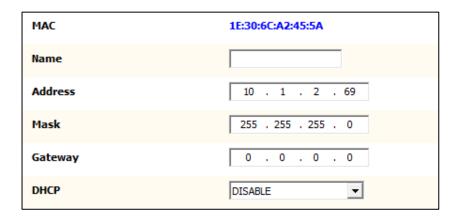
Make sure the load cell or force sensor is loaded with the reference weight and is stable.

Set the reference weight.

Click Calibrate load on scale and the gain point is saved.


The device is now calibrated.

More calibration options are available in the Full setup



Select Step 4, Communication

Every available communication port has its own settings. The available ports depend on the option board.

Ethernet

MAC

This shows the MAC address of the device. This number cannot be changed.

Name

Domain Name System (DNS). A name can be given to the device to access the device in the Ethernet network by name instead of by IP address.

Address

Set the IP address of the device. Make sure the IP address is in the IP range of the network.

Mask

Set the subnet mask of the device.

Gateway

Set the gateway of the network the device is connected to.

DHCP

Dynamic Host Configuration Protocol (DHCP). When this function is enabled, the device gets an IP address, subnet mask and gateway address from the network it is connected to.

Ethernet BusLink

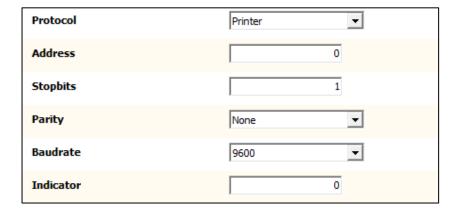
Address	0
Sub address	0

BusLink is a PENKO protocol to connect the device to a PENKO FLEX series device. The device parameters like indicator values and I/O status become available in the PENKO FLEX. A BusLink network can contain up to 40 PENKO devices (8 addresses x 5 sub addresses).

Address

Set the BusLink address.

Available options
0 = off
1
2
3
4
5
6
7
8


Sub address

Set the BusLink sub address.

Available options	
0 = off	
1	
2	
3	
4	
5	

RS232 / RS422

The available options for RS232 and RS422 are the same and therefore described only once.

Protocol

Select the protocol for the serial port.

Address

Set the address of the port for identification in the network.

Stopbits

Set the number of stop bits needed for the selected protocol.

Parity

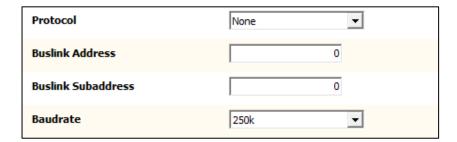
Set the parity needed for the selected protocol.

Available options	
None	
Odd	
Even	
Mark	
Space	

Baudrate

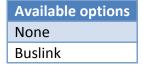
Set the baud rate needed for the selected protocol.

Available options
1200
2400
4800
9600
19200
38400
57600
115200


Indicator

This option is only active when ASCII is selected as protocol. The value of the selected indicator will be sent out over the communication port.

Range 1...30


CAN

BusLink is a PENKO protocol to connect the device to a PENKO FLEX series device. The device parameters like indicator values and I/O status become available in the PENKO FLEX. A BusLink network can contain up to 40 PENKO devices (8 addresses x 5 sub addresses).

Protocol

Enable or disable the BusLink protocol.

Buslink Address

Set the BusLink address.

Available options
1
2
3
4
5
6
7
8

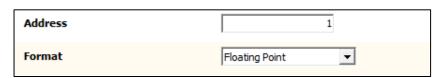
Buslink Subaddress

Set the BusLink sub address.

Available options
1
2
3
4
5

Baudrate

Set the baud rate equal to the baud rate of the connected PENKO FLEX.


Available options
100k
125k
250k
500k

The CANopen protocol is not available

Profibus

Address

Set the Profibus address for the device.

Format

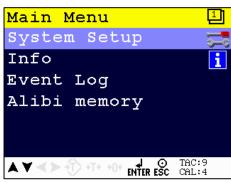
Set the format for the values sent over Profibus.

Select Done and click End Quick setup

This will finish the quick setup.

5.2 Using the device

The menu structure in the device has no quick setup like the configuration software. The first use items can be set along with all other settings.


Main Menu

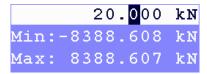
From the main screen, press the Enter button for 2 seconds to enter the Main Menu.

Press 2 seconds

Navigate through menu

Use the Up and Down button to navigate through the menus. Use the Enter button to enter a menu item. Use the Escape button to step back a level.

Up


Down

Open menu item

Back to previous level

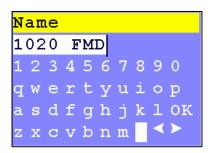
Edit a value

Use the arrow buttons to edit a value. Select the digit with the Left and Right button. Increase the value with the Up button. Decrease the value with the Down button. Use the Enter button to confirm the whole value. Use the Zero button to clear the whole value.

Select next digit

Increase selected digit

Decrease selected digit


Confirm whole value

Clear whole value

Edit a text

In case a text has to be edited, a keyboard appears on the screen.

Use the arrow buttons to navigate through the keyboard. Use the Enter button to select the character. Use the Zero button for backspace. Use the Peak-hold button to change the character set.

Left

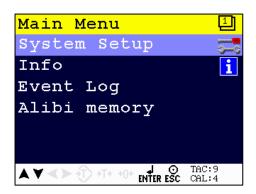
Right

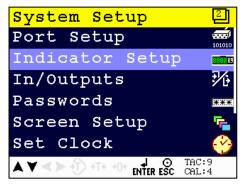
Up

Down

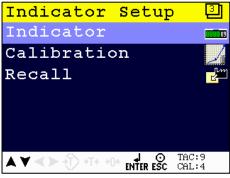
n Select character

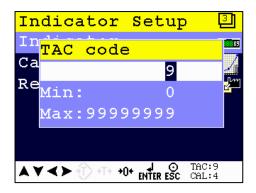
Backspace

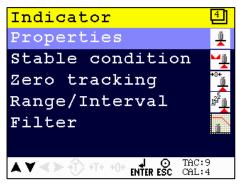



Change character set

Indicator parameters

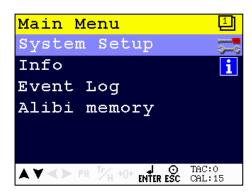

The indicator parameters from the quick setup can be set as follows:



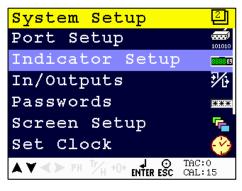


Enter the TAC as shown on the right bottom corner of the screen using the arrow buttons - apply with the Enter button

Here the Unit, Step size, Decimal point and Max load can be set

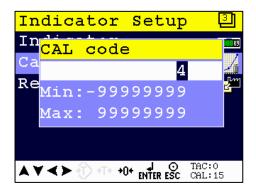


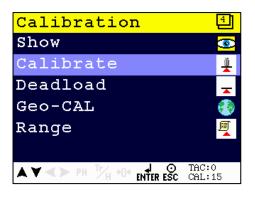
The predefined settings of step 2 in the quick setup are not available in the configuration menu of the device

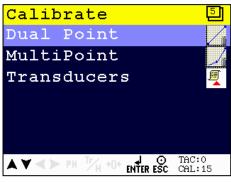


Calibration

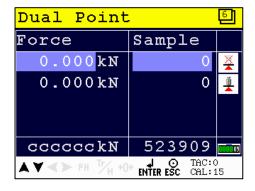
The calibration from the quick setup can be performed as follows:

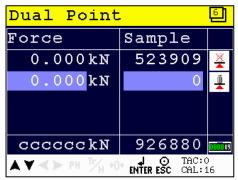


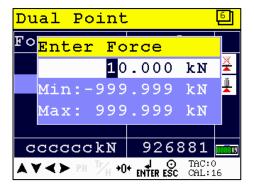


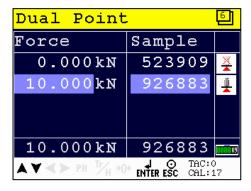


Enter the CAL as shown on the right bottom corner of the screen using the arrow buttons - apply with the Enter button

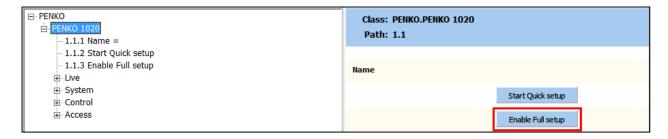





Make sure the load cell or force sensor is not loaded and is stable before pressing Enter


Make sure the load cell or force sensor is loaded with the reference weight and is stable before pressing Enter

Enter the reference weight - apply with the Enter button

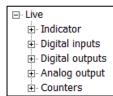

The device is now calibrated


6 Full setup

The full setup is described with use of the configuration software. All settings are also available in the device menu. A full menu structure can be found in the attachment.

In the tree, select **PENKO 1020**. The properties of this tree node are shown in the right screen.

The full settings are available under Enable Full setup



To confirm a setting press enter or click the Apply button

6.1 Live

Live shows various live parameters of the device.

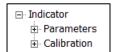
Node	Description
Indicator	Live indicator values and indicator status
Digital inputs	Live status of the 3 digital inputs (0 = OFF, 1 = ON)
Digital outputs	Live status of the 4 digital outputs (0 = OFF, 1 = ON)
Analog output	Live output percentage of the analog output
Counters	Live counter status of the 3 digital inputs

6.2 System

System shows the system information.

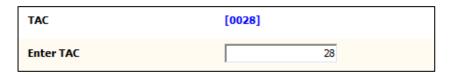
Node	Description
ID	Hardware ID of the device
Version	Version number of the firmware
Serial	Serial number of the device
Boot version	Version number of the boot loader

6.3 System Setup

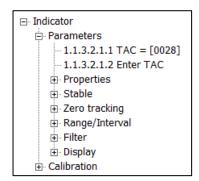

System Setup contains the full device configuration.

6.3.1 Service

Service is for PENKO employees only.

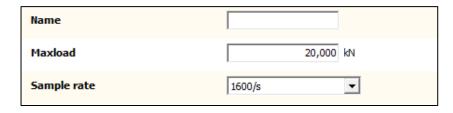

6.3.2 Indicator

Indicator contains the indicator parameters and calibration.



PARAMETERS

To enter the parameters, enter the shown TAC and confirm with Enter or the Apply button:


The parameters are now shown in the tree:

Properties

Properties contain the basic weigher parameters.

Name

Set a name to identify the device in a multiple device setup (optional).

Maxload

Set the force the indicator will use as maximum. If the measured force is higher than the maximum load, the display will show ======

Sample rate

Select the sample rate for measuring.

Available options
10/s
20/s
25/s
50/s
100/s
200/s
400/s
800/s
1600/s

Step

Select the step size. This setting defines the scaled parts of the force value. The display value will be rounded to the nearest value with a valid step size. Available options:

Available options
1
2
5
10
20
50
100
200

→ Example:

Measured value is 2005 kN.

Step size	Displayed value
1	2005
2	2006
5	2005
10	2010
20	2000
50	2000

Decimal point

Select the position of the decimal point. This setting will be used everywhere the measured force is displayed or printed.

Available options
000000
0.0000
0000.00
000.000
00.0000
0.00000

Unit

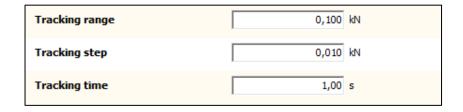
Set the unit of measurement, for example kN or N. This will be shown everywhere the measured force is displayed or printed.

Stable

The stable settings determine when the indicator accepts the current value as stable.

Stable range

Set the range the indicator has to be in for the set time to give a stable signal.


Stable time

Set the time the weigher has to be within the range to give the stable signal.

With these values, the indicator has to be within the range of 0,002kN over the time of 1,00 second to indicate stable. When stable, the stable indication on the display will light up.

Zero tracking

Zero tracking is able to tune the zero point back to zero when the scale becomes dirty.

Tracking range

Set the maximum offset to tune back to zero.

Tracking step

Set the step size that will be tuned every time the force is within the tracking range.

Tracking time

Set the time that the force has to be within the tracking range to tune 1 step back to zero.

With these values, the indicator will step back 0,010kN towards zero every 1,00 second as soon as the measured force gets below 0,100kN.

Range/Interval

Set the indicator to change its step size when the measured force reaches a certain value.

Range

Set the number of divisions when the indicator has to display with the next step size. Auto ranging is disabled when range is set to 0.

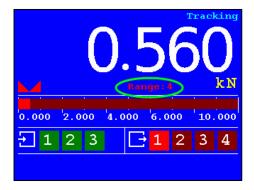
MaxStep

Select the biggest allowed step size.

Available options
Step 1
Step 2
Step 5
Step 10
Step 20
Step 50
Step 100
Step 200

Mode

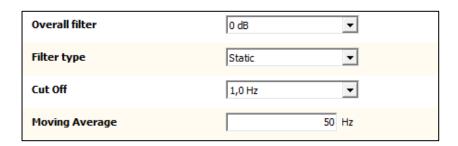
Select the mode. In multi-range mode the step size is reset when the indicator has been lower or equal to zero. In multi-interval mode the step size is reset when the value reached the previous range.


→ Example:

With the shown values, the ranges are as follows:

Range No.	Displayed range	Step size
Range: 1	0 - 100	1
Range: 2	100 - 200	2
Range: 3	200 - 500	5
Range: 4	500 - 1000	10
Range: 5	1000 - 2000	20
Range: 6	2000 - 5000+	50

The number of ranges depends on the selected max step size. In this case there are 6 possible ranges. The current range number is indicated in the display.



In multi-range mode, the range will only get back to range 1 when the indicator has been lower or equal to zero. In this case, when the value goes down, range 4 will remain active until the indicator reaches zero.

In multi-interval mode, the range number will follow the table above. In this case, when the value gets lower than 500, range 3 will become active, etc.

Filter

Filters are used to filter vibrations present in an industrial environment.

Overall filter

Select an overall filter. This will affect all indicator signals in the device. 0dB is no filtering. -48dB gives the strongest damping.

Available options
0 dB
-6 dB
-12 dB
-18 dB
-24 dB
-30 dB
-36 dB
-42 dB
-48 dB

To prevent a loss of information or accuracy, don't set the overall filter higher than 24dB. When no accuracy is needed, a higher filter setting is allowed to enable extreme filtering.

Filter type

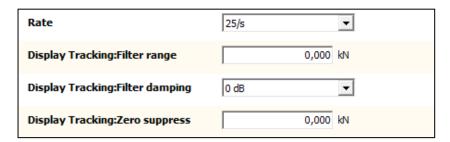
Select the type of filtering. This is a 2nd order filter. This filter affects all signals up to and including the cutoff frequency.

Available options	Description
None	No filter
Dynamic	Used when the signal is changing fast
Static	Used when the signal is changing slow

Cut Off

Select the cutoff frequency for the selected filter type.

Available options
1,0 Hz
1,4 Hz
2,5 Hz
5,0 Hz
10 Hz
20 Hz
40Hz


Moving Average

Set the moving average frequency for the selected filter.

Display

The display filter will damp the indicator signal to the display to get a calm display view.

Rate

Select the refreshment speed of the display.

Available options
1/s
2/s
3/s
5/s
10/s
25/s
50/s

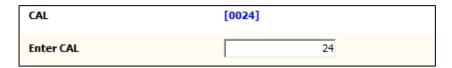
Display Tracking: Filter range

Set the range where the filter is active.

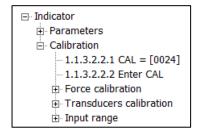
Display Tracking: Filter damping

Select the strength of the filter. 0dB is no filtering. -48dB gives the strongest damping.

Available options
0 dB
-6 dB
-12 dB
-18 dB
-24 dB
-30 dB
-36 dB
-42 dB
-48 dB

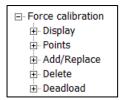

Display Tracking: Zero suppress

Set the band within the indicator will show 0.



CALIBRATION

To enter the calibration, enter the shown CAL and confirm with Enter or the Apply button:



The parameters are now shown in the tree:

Force calibration

Force calibration contains the calibration settings.

→ **Display** shows the current display values.

Tracking

The current displayed tracking value.

Tracking x 10

The current displayed tracking value with extra digit for more accuracy.

Signal

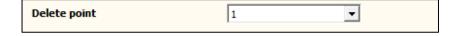
The current voltage, from the load cell or force sensor, in millivolts.

ADC

The current ADC value.

→ **Points** show the stored calibration points.

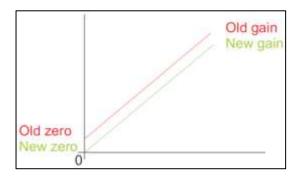
Point 1	927717 ADC, 10,000 kN
Point 2	524006 ADC, 0,000 kN
Point 3	not used
Point 4	not used
Point 5	not used
Point 6	not used
Point 7	not used
Point 8	not used
Point 9	not used
Point 10	not used


Up to 10 calibration points can be stored to realize a multi-point calibration.

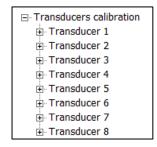
→ Add/Replace point is used to add a calibration point.

When a point is added with a value that already exists, the existing point will be replaced. When a point is added with a new value, it will be stored as a new point.

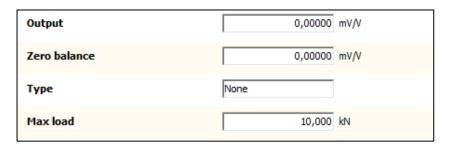
→ **Delete point** is used to delete a calibration point.


Select the number of the calibration point (see Points) and confirm with Enter or the Apply button. The calibration point will be deleted.

→ **Deadload** can be set to pull the whole measuring line back to zero. The zero point could be different because of some modification on the scale or dirt.



Normally, the dead load is zero, but it's possible to change the line position if there's weight on the scale. To do so, edit the actual weigh value to the new known value.



Transducers calibration

Transducer calibration is used for a theoretic calibration, using the datasheet of the load cell or force sensor. Up to 8 transducers can be set.

For each load cell or force sensor the following data can be set.

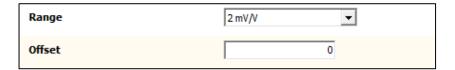
Output

Set the output value as mentioned on the datasheet.

Zero balance

Set the zero balance value as mentioned on the datasheet.

Type


Set a name for the load cell or force sensor.

Max load

Set the maximum load as mentioned on the datasheet.

Input range

Input range is used to set the range for the connected load cell or force sensor.

Range

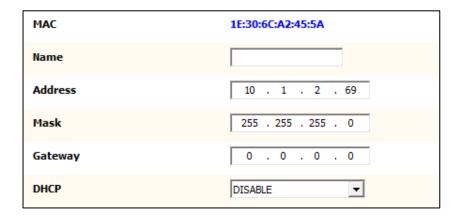
Select the input range.

Available options	Description
1mV/V	
1,5 mV/V	
2 mV/V	Calibrated range*
2,5 mV/V	
3 mV/V	Calibrated range*

^{*} When using a theoretic calibration, note that these two ranges are officially calibrated

Offset

Set an ADC value offset. This can be used when the indicator gets out of its ADC range.



6.3.3 Communication

Every available communication port has its own settings. The available ports depend on the option board.

□ Communication	
Ethernet	
± Ethernet BusLink	
.±. RS232	
⊕ Profibus	

Ethernet

MAC

This shows the MAC address of the device. This number cannot be changed.

Name

Domain Name System (DNS). A name can be given to the device to access the device in the Ethernet network by name instead of by IP address.

Address

Set the IP address of the device. Make sure the IP address is in the IP range of the network.

Mask

Set the subnet mask of the device.

Gateway

Set the gateway of the network the device is connected to.

DHCP

Dynamic Host Configuration Protocol (DHCP). When this function is enabled, the device gets an IP address, subnet mask and gateway address from the network it is connected to.

Ethernet BusLink

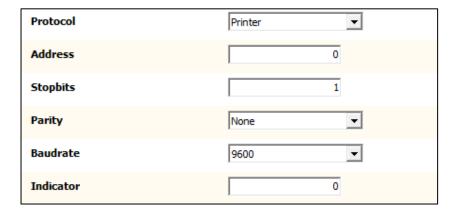
Address	0
Sub address	0

BusLink is a PENKO protocol to connect the device to a PENKO FLEX series device. The device parameters like indicator values and I/O status become available in the PENKO FLEX. A BusLink network can contain up to 40 PENKO devices (8 addresses x 5 sub addresses).

Address

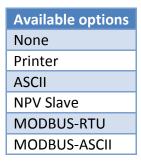
Set the BusLink address.

Available options
0 = off
1
2
3
4
5
6
7
8


Sub address

Set the BusLink sub address.

Available options
0 = off
1
2
3
4
5


RS232 / RS422

The available options for RS232 and RS422 are the same and therefore described only once.

Protocol

Select the protocol for the serial port.

Address

Set the address of the port for identification in the network.

Stopbits

Set the number of stop bits needed for the selected protocol.

Parity

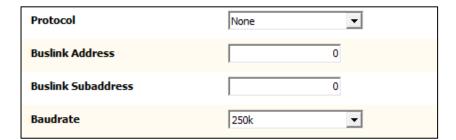
Set the parity needed for the selected protocol.

Available options
None
Odd
Even
Mark
Space

Baudrate

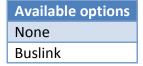
Set the baud rate needed for the selected protocol.

Available options
1200
2400
4800
9600
19200
38400
57600
115200


Indicator

This option is only active when ASCII is selected as protocol. The value of the selected indicator will be sent out over the communication port.

Range 1...30


CAN

BusLink is a PENKO protocol to connect the device to a PENKO FLEX series device. The device parameters like indicator values and I/O status become available in the PENKO FLEX. A BusLink network can contain up to 40 PENKO devices (8 addresses x 5 sub addresses).

Protocol

Enable or disable the BusLink protocol.

Buslink Address

Set the BusLink address.

Available options
1
2
3
4
5
6
7
8

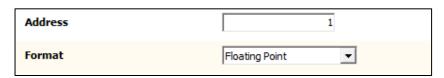
Buslink Subaddress

Set the BusLink sub address.

Available options
1
2
3
4
5

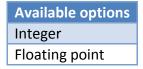
Baudrate

Set the baud rate equal to the baud rate of the connected PENKO FLEX.


Available options
100k
125k
250k
500k

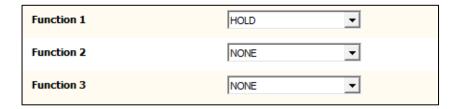
The CANopen protocol is not available

Profibus


Address

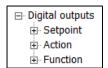
Set the Profibus address for the device.

Format

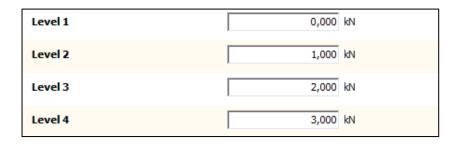

Set the format for the values sent over Profibus.

6.3.4 Digital inputs

The digital inputs can execute a function.


Function

Select a function for the input.


Available options	Description
None	No function
Zero Set	Set indicator to zero
Zero Reset	Reset indicator from zero
Hold	Store current value as hold value
Peak Reset	Reset the peak hold value
Valley Reset	Reset the valley hold value
T.I.R.	Reset both peak and valley value
Keyboard Lock	Disable the device keyboard

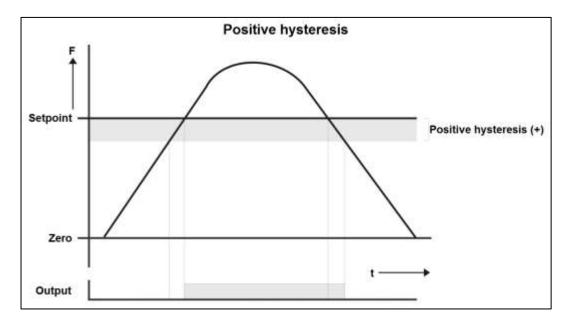
6.3.5 Digital outputs

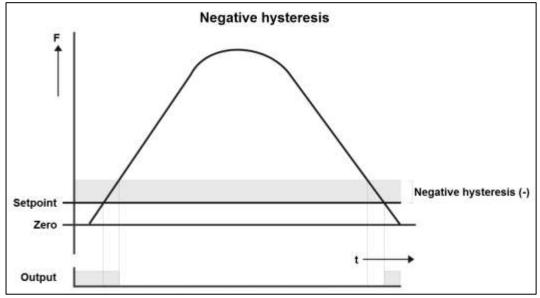
The digital outputs can respond to the value of an indicator.

Setpoint

Level

Set the level for each output when it has to turn on.




Action

Hysteresis 1	0,010 kN
Hysteresis 2	0,010 kN
Hysteresis 3	0,010 kN
Hysteresis 4	0,010 kN

Hysteresis

Set the hysteresis for each output. The hysteresis can be positive or negative.

Function

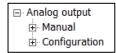
Function 1	FAST TRACKING
Function 2	FAST TRACKING
Function 3	FAST TRACKING ▼
Function 4	FAST TRACKING

Function

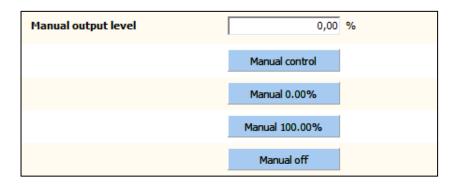
Select the indicator the output has to react on.

Available options	Description
Fast Tracking	Unfiltered tracking value
Tracking	Filtered tracking value
Peak	Peak hold value - the highest measured value
Valley	Valley hold value - the lowest measured value
Hold	Hold value - stored with zero button in hold mode, or with hold input
T.I.R.	Total Indicated Readout value - the difference between the peak hold and
	valley hold value
Fast Tracking x10	Fast tracking with extra decimal for more accuracy
Tracking x10	Tracking with extra decimal for more accuracy
Peak x10	Peak with extra decimal for more accuracy
Valley x10	Valley with extra decimal for more accuracy
Hold x10	Hold with extra decimal for more accuracy
T.I.R. x10	T.I.R. with extra decimal for more accuracy
Sample	ADC sample value

→ Example:


Output	Setpoint	Action	Function	Description
1	1,000 kN	0,100 kN	Tracking	Positive hysteresis - output will turn on at setpoint
2	1,000 kN	-0,100 kN	Tracking	Negative hysteresis - output will turn off at setpoint

- Output 1 will turn on when the tracking value reaches 1,000 kN
- It will turn off again when the tracking value drops below 0,900 kN (1,000 0,100)
- Output 2 will turn off when the tracking value reaches 1,100 kN (1,000 + 0,100).
- It will turn on again when the tracking value drops below 1,000 kN



6.3.6 Analog output

The analog output is an option. The settings are only available when the DAC module is placed.

Manual

Manual output level

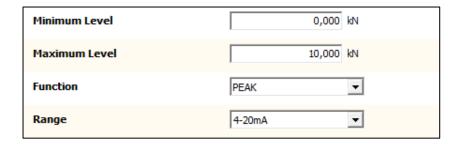
Set the percentage for the output when manual control is enabled.

Manual control

Enable manual control of the output.

Manual 0.00%

Set the output to 0%


Manual 100.00%

Set the output to 100%

Manual off

Disable manual control of the output.

Configuration

Minimum level

Set the indicator value the analog output will set as 0.00% output.

Maximum level

Set the indicator value the analog output will set as 100.00% output.

Function

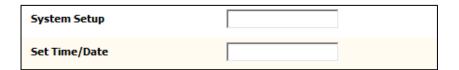
Select the indicator the output has to react on.

Available options	Description
Fast Tracking	Unfiltered tracking value
Tracking	Filtered tracking value
Peak	Peak hold value - the highest measured value
Valley	Valley hold value - the lowest measured value
Hold	Hold value - stored with zero button in hold mode, or with hold input
T.I.R.	Total Indicated Readout value - the difference between the peak hold and valley hold value
Fast Tracking x10	Fast tracking with extra decimal for more accuracy
Tracking x10	Tracking with extra decimal for more accuracy
Peak x10	Peak with extra decimal for more accuracy
Valley x10	Valley with extra decimal for more accuracy
Hold x10	Hold with extra decimal for more accuracy
T.I.R. x10	T.I.R. with extra decimal for more accuracy
Sample	ADC sample value

Range

Select the range for the output.

Available options	Description
RAW	16 bit DAC value
0 - 20 mA	The minimum and maximum output of the analog output
0 - 24 mA	The minimum and maximum output of the analog output
4 - 20 mA	The minimum and maximum output of the analog output
4 - 24 mA	The minimum and maximum output of the analog output


→ Example:

Minimum level	Maximum level	Function	Range
0,000 kN	10,000 kN	Tracking	4-20 mA

- If the tracking value is **0,000 kN**, the analog output will send out **4 mA** (0%)
- If the tracking value is **5,000 kN**, the analog output will send out **12 mA** (50%)
- If the tracking value is **10,000 kN**, the analog output will send out **20 mA** (100%)

6.3.7 Passwords

The access to some menu items can be protected with a password. This only applies when accessing the menu on the device itself. With the configuration software the menus can always be accessed.

System Setup

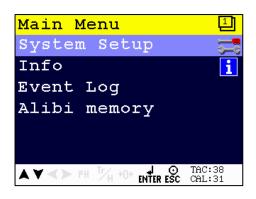
Set a password for protecting the items within the system setup menu.

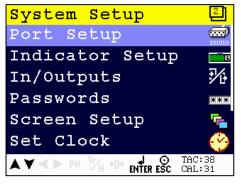
Set Time/Date

Set a password for protecting the Set Clock menu item.

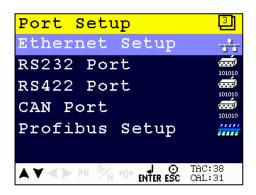
→ Example:

Enter a password for System Setup, for example 'abc'.


On the device, go to the System Setup menu:

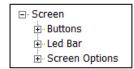


Press 2 seconds

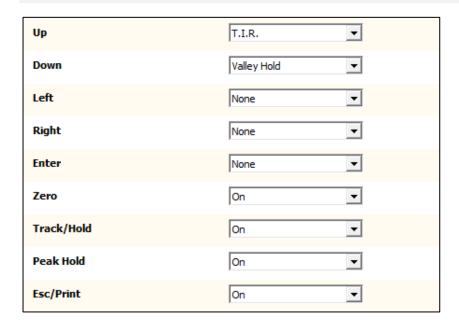


Try to enter a menu item in the system setup menu

The password screen appears - enter the password to gain access to the menu item



The menu item is now available - when no actions are performed the access is blocked again after 60 seconds



6.3.8 Screen

In Screen all screen options can be set.

Buttons

The Zero, Track/Hold, Peak Hold and Esc/Print button can be enabled or disabled.

To the other buttons a function can be assigned. By default, T.I.R. is assigned to the Up button and Valley Hold is assigned to the Down button.

Available options	Description
None	No function
Zero Set	Set indicator to zero
Track/Hold	Toggle between tracking and hold display
Track	Show the tracking value on the display
Peak Hold	Show the peak hold value on the display
Valley Hold	Show the valley hold value on the display
T.I.R.	Show the T.I.R. value on the display
Hold	Show the hold value on the display
Set Levels	Open the setpoint screen
Print	Print, see printer settings menu

Led Bar

Bar Style	Bar ▼
Minimum	0,000
Lower Margin	2,000
Upper Margin	8,000
Maximum	10,000
Step	1,000

Bar Style

Select the style of the led bar. Bar Peak and Dot Peak show a peak value indication for a second when the value drops.

Available options	Description
Bar	0.000 2.000 4.000 6.000 10.000
Dot	0.000 2.000 4.000 6.000 10.000
Bar Peak	0.000 2.000 4.000 6.000 10.000
Dot Peak	0.000 2.000 4.000 6.000 10.000
Bar Reverse	10.000 8.000 6.000 4.000 0.000
Dot Reverse	10.000 8.000 6.000 4.000 0.000

Minimum

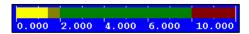
Set the minimum value for the led bar.

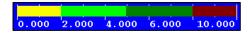
Lower Margin

Set a lower margin. This setting works together with the Upper Margin setting.

Upper Margin

Set an upper margin. This setting works together with the Lower Margin setting.


The margin indication only works when both lower and upper margin are set.

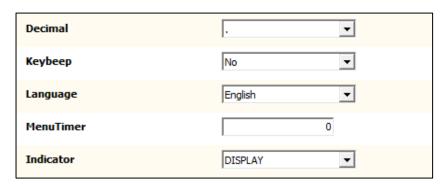

→ Example:

Bar Style	Minimum	Lower Margin	Upper Margin	Maximum	Step
Bar	0,000	2,000	8,000	10,000	1,000

Value below the margin is yellow:

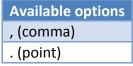
Value within the margin is green:

Value above the margin is red:


Maximum

Set the maximum value for the led bar.

Step


Set the value of the step size between the minimum and maximum value.

Screen Options

Decimal

Select the decimal character shown on the display

Keybeep

Enable or disable the key beep. When enabled, every key press is confirmed with a beep. When disabled, only entering the main menu (pressing enter for 2 seconds) gives a beep.

Available options
No
Yes

Language

Select the language for the device. This only applies to the device. The configuration software is always in English.

Available options
English
German
French
Dutch

MenuTimer

Set the time (in seconds) for auto escape menu. This only applies to the device. When a menu item is open and no action is performed during the set time, the menu jumps back one level. This is repeated until the device is back on the main screen.

If the value is set to 10 seconds or less, the auto escape function is disabled.

Indicator

Select the indicator that is shown on the display. In case any other indicator than Display is selected, the buttons for showing the Tracking, Hold, T.I.R., Peak hold and Valley hold value are disabled.

Available options	Description
Display	Default display
Fast Tracking	Unfiltered tracking value
Tracking	Filtered tracking value
Peak	Peak hold value - the highest measured value
Valley	Valley hold value - the lowest measured value
Hold	Hold value - stored with zero button in hold mode, or with hold input
T.I.R.	Total Indicated Readout value - the difference between the peak hold and valley hold value
Display x10	Default display with extra decimal for more accuracy
Fast Tracking x10	Fast tracking with extra decimal for more accuracy
Tracking x10	Tracking with extra decimal for more accuracy
Peak x10	Peak with extra decimal for more accuracy
Valley x10	Valley with extra decimal for more accuracy
Hold x10	Hold with extra decimal for more accuracy
T.I.R. x10	T.I.R. with extra decimal for more accuracy
Sample	ADC sample value

6.3.9 Clock

The device date and time are used for printer tickets and for storing data in the alibi memory and event log. The device is equipped with a backup battery for the real time clock.

Current Time	16:22:44
Current Date	08-08-2014
Set Time (HH:MM:SS)	16:22:40
Set Date (DD:MM:YYYY)	08-08-2014

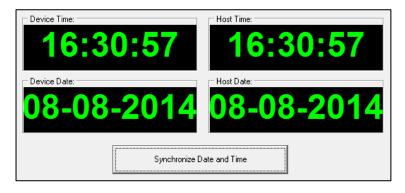
Current Time

The current device time in HH:MM:SS format.

Current Date

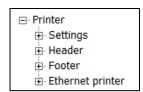
The current device date in DD-MM-YYYY format.

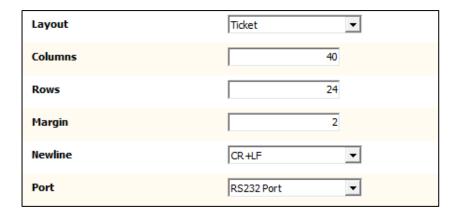
Set Time


Set the time in the indicated format to correct the device time.

Set Date

Set the date in the indicated format to correct the device date.


An easy way to synchronize time and date is to use the Clock function in Pi Mach II.



6.3.10 Printer

A printer can be connected to the Ethernet or the serial port. It's also possible to print to the build in alibi memory. Support for Zebra protocol printers is present.

Settings

Layout

Select the layout for printing. The **Ticket** layout is a predefined format. The **Line** layout prints every measurement on a new line. For both layouts a 24 and 40 columns format is present.

24 columns

40 columns

Programmable header		
DATE	19-07-99	
TIME	02:27.40	
TICKET:	100	
TRACK	0,855 kN	
PEAK	1,509 kN	
VALLEY	0,211 kN	
HOLD	0,000 kN	
T.I.R.	1,298 kN	
Programma	able footer	

Programmable header	
DATE	19-07-99
TIME	02:30.55
TICKET NUMBER:	101
TRACK	0,855 kN
PEAK	1,509 kN
VALLEY	0,211 kN
HOLD	0,000 kN
T.I.R.	1,298 kN
Programmable footer	

Li	n	e

Ticket

Programmable header		
NR	Peak	Valley kN
119	1,509	0,211
120	1,509	0,211
121	1,509	0,211

Programmable header					
NR	Track	Peak	Valley		
131	0,855 kN	1,509 k	cN 0,211	kN	
132	0,855 kN	1,509 k	cN 0,211	kN	
133	0,855 kN	1,509 k	cN 0,211	kN	

Each print action has a number (ticket = ticket number, line = line number). When the device powers up the print counter is set to zero.

Columns

24 and 40 columns printing is supported as shown in the layout examples.

Available options
039 = 24 columns
4080 = 40 columns

Rows

For the ticket layout, the number of rows represents the empty lines after each ticket.

For the line layout, the number of rows represents the total number of rows for the header and the lines. When set to 1 for example, each printed line gets a header. When set to 10 for example, each 6 lines get a header (in case the header is 4 lines).

Margin

Set the number of empty spaces before printing.

Newline

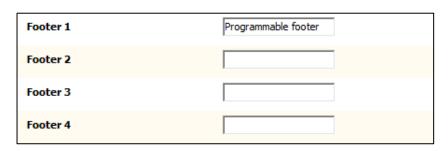
Select the end of line sequence. When Zebra ZPL II is selected, a printer with this protocol can be used. The Zebra printer commands are automatically added to the printer ticket.

Available options
CR
LF
CR+LF
CR+00
None
Zebra ZPL II

Port

Select the communication port used for the printer.

Available options	Description
None	No printer
RS232 port	Set the printer parameters in System Setup - Communication - RS232
RS422 port	Set the printer parameters in System Setup - Communication - RS422
IP Number	Set the printer IP address in Ethernet printer - IP number
Alibi Memory	See chapter Alibi Memory and Event Log



Header 1 Programmable header Header 2 Header 3 Header 4

Header 1...4

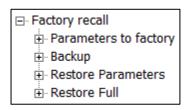
Optionally set a header for the printer ticket. Up to 4 lines can be programmed.

Footer

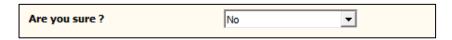
Footer 1...4

Optionally set a footer for the printer ticket. Up to 4 lines can be programmed.

Ethernet printer

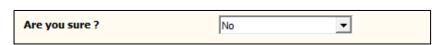

IP number

In case the selected printer port in the settings menu is **IP Number**, enter the IP address of the printer.

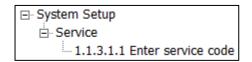


6.3.11 Factory recall

A factory recall can be performed. Also the device parameters can be backed up and restored.



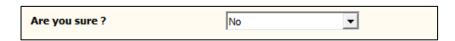
Parameters to factory



Select yes to set all parameters to factory. The device reboots after this action.

Backup

A backup of the device configuration can be made within the device. A password is required for the backup. Contact PENKO for this password. When using Pi Mach II manage to make a backup, enter this password in the service code field to enable the backup option.



Restore parameters

This option only restores the non-certified parameters.

Restore full

This option restores all parameters.

6.4 Control

Control has various functions to control the indicator.

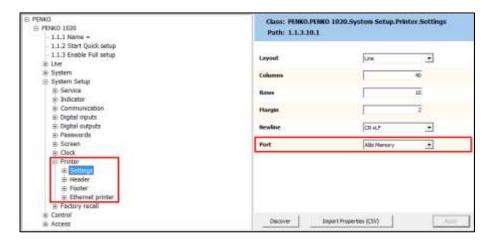
Node	Description
Zero Set	Set the indicator value to zero
Zero Reset	Set the indicator value back to its original value
Hold Reset	Reset the stored hold value
Peak Reset	Reset the stored peak hold value
Valley Reset	Reset the stored valley hold value
TIR Reset	Reset the stored Total Indicated Readout value

6.5 Access

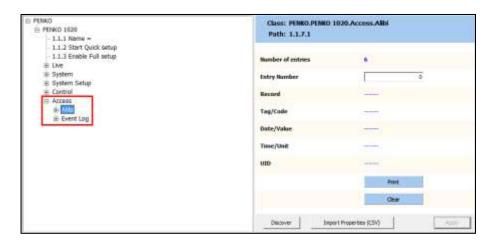
Access contains the Alibi Memory and Event Log.

Node	Description
Alibi	Browse, print or clear the Alibi Memory
Event Log	Browse of print the Event Log

Also see the Alibi Memory and Event Log chapter


7 Alibi Memory and Event Log

The Alibi and Event Log support the following features:


- Automatically store system events
- Create alibi records
- View, search and print alibi records and event logs

7.1 Alibi Memory

Alibi records are generated by a user action. To generate records, go to the Printer Settings menu and set Port to Alibi memory.

Every time the Print button is pressed, a new alibi record is created. To see the alibi record, go to the Access menu and select Alibi.

Number of entries

The total number of alibi records.

Entry Number

Enter the number of the desired record and conform with Enter or the Apply button. The record is shown.

Record

The type of record. A record can be a **Header** or a **Data** record. A header records is the title of the record and shows a tag, date and time. A header has several data records that show the code, value and unit of the stored value.

Tag/Code

Tag shows a tag the header record belongs to. By default this is "Alibi 001" and cannot be changed. Code shows the type of value stored in the data record.

Date/Value

Date shows the date of the header record. Value shows the stored measurement of the data record.

Time/Unit

Time shows the time of the header record. Unit shows the stored unit of the data record.

UID

Every record has a Unique ID number, the UID.

Print

This will print the total alibi memory to a connected printer. On the device it's possible to print only a part of the alibi memory. This is explained further on.

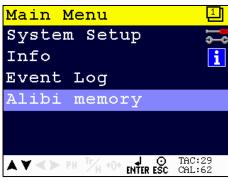
Clear

This will clear the total alibi memory.

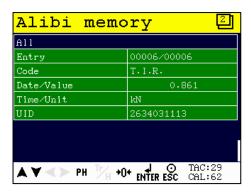
When the print button is pressed, 6 records are added to the alibi memory. This is 1 header record and 5 data records. Example:

Number	Record	Tag/Code	Date/Value	Time/Unit	UID
1	Header	Alibi 001	14-08-14	14:40:58	3298435072
2	Data	Force	0.783	kN	1755848705
3	Data	Peak	0.990	kN	2859737091
4	Data	Valley	0.129	kN	2346983429
5	Data	Hold	0.649	kN	0545136647
6	Data	T.I.R.	0.861	kN	2634031113

Example of a printer layout of these records:


```
Device: 1020
  Serial Number 14080058
  Date: 14-08-14    Time: 15:02:53
  Alibi Memory
                  Code
  Number UID
                                     Date/Value
                                                     Time/Unit
      1 3298435072 Alibi 001
                                      14-08-14
                                                     14:40:58
       2 1755848705 Force
                                          0.783
                                                     kN
       3 2859737091 Peak
                                          0.990
                                                     kN
       4 2346983429 Valley
                                          0.129
                                                     kN
       5 0545136647 Hold
                                          0.649
                                                     kN
       6 2634031113 T.I.R.
                                          0.861
                                                     kN
```

The alibi records are also available on the device.



Press 2 seconds

Use the buttons for the following actions:

Last

Jump to the last entry of the list.

Filter

Filter the list on date or UID. Select All to undo the filtering.

First/Clear

Jump to the first entry of the list.

Press for 2 seconds to clear the alibi memory. A confirmation screen is shown first.

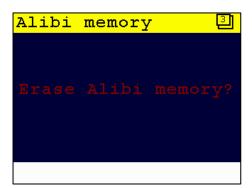
Escape/Print

Leave the alibi memory.

Press for 2 seconds to print all records to a connected printer. When a filter is active, the filtered range is printed.

Previous

Select the previous record.

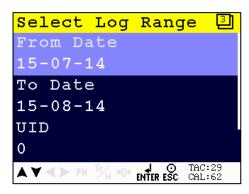


Next

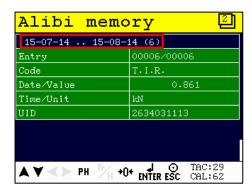
Select the next record.

Clearing the alibi memory:

Press the Zero button for 2 seconds. The following screen is shown:



Press the Enter button to confirm or the Escape button to ignore.



Filtering the alibi memory:

Press the Enter button. The following screen is shown:

Use the "From Date" and "To Date" to set a date filter, or type in a UID to filter on 1 specific record. Leave the filter screen with the Escape button and the filter is applied.

When printing the alibi records, only the filtered range is printed.

To remove the filter, press the Enter button to open the filter screen. Select "All" and confirm with the Enter button.

```
Select Log Range

To Date

15-08-14

UID

0

All

AV A PH TH +0+ ENTER ESC CAL:62
```


7.2 Event Log

System events are generated automatically by the system. These events can be seen but cannot be erased. Erasing of the records can only be performed by PENKO. Events are created for logging software updates, calibration changes, parameter changes, clearing the alibi memory, etc.

To see the event log, go to the Access menu and select Event Log.

Number of entries

The total number of event logs.

Entry Number

Enter the number of the desired record and conform with Enter or the Apply button. The record is shown.

Record

The type of record. An event log is always a **Header** record.

Tag/Code

This shows the stored event, like Software Update, Set Clock, etc.

Date/Value

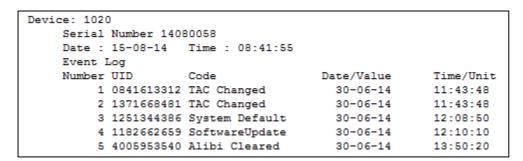
This shows the date of the event.

Time/Unit

This shows the time of the event.

UID

Every record has a Unique ID number, the UID.

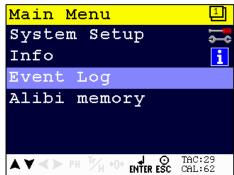

Print

This will print the total event log to a connected printer. On the device it's possible to print only a part of the event log. This is explained further on.

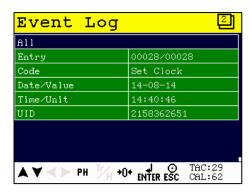
Examples:

Number	Record	Tag/Code	Date/Value	Time/Unit	UID
1	Header	SoftwareUpdate	31-0-14	09:11:28	3949592585
2	Header	TAC Changed	06-08-14	14:18:48	1045692434
3	Header	CAL Changed	14-08-14	14:40:22	4138074136

Example of a printer layout of these records:



The event records are also available on the device.



Press 2 seconds

Use the buttons for the following actions:

Last

Jump to the last entry of the list.

Filter

Filter the list on date or UID. Select All to undo the filtering.

First

Jump to the first entry of the list.

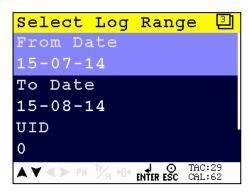
Escape/Print

Leave the event log.

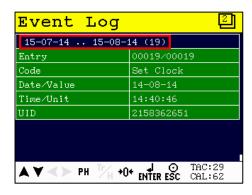
Press for 2 seconds to print all records to a connected printer. When a filter is active, the filtered range is printed.

Previous

Select the previous record.


Next

Select the next record.



Filtering the event log:

Press the Enter button. The following screen is shown:

Use the "From Date" and "To Date" to set a date filter, or type in a UID to filter on 1 specific record. Leave the filter screen with the Escape button and the filter is applied.

When printing the event log, only the filtered range is printed.

To remove the filter, press the Enter button to open the filter screen. Select "All" and confirm with the Enter button.

```
Select Log Range

To Date

15-08-14

UID

0

All
```

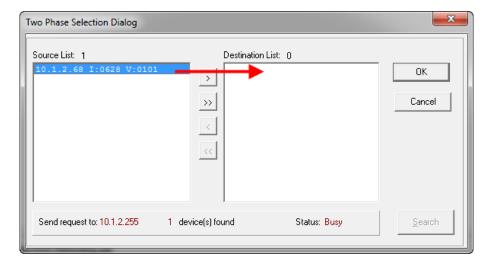

8 Firmware update


Update the application firmware by Ethernet or USB connection.

8.1 Ethernet

Connect the 1020 FMD to the computer through Ethernet. Start PI Mach II. Set communication to Ethernet. Also see the Pi Mach II manual.

Start the Firmware Update Manager.


Click Open and select the PIP file.

Click Search for devices and select the device IP address for the 1020 FMD.

Use double click or the arrow button to move the device from the Source List to the Destination List and click OK.

Now click Firmware Update to start the update.

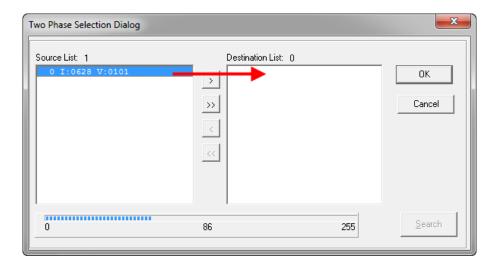
The 1020 FMD will reboot automatically and the Firmware Update Manager will show Updated.

8.2 USB

Connect the 1020 FMD to the computer through USB. Start PI Mach II. Set communication to USB. Also see the Pi Mach II manual.

Start the Firmware Update Manager.

Click Open and select the PIP file.



Click Search for devices and select the device with source "0".

Use double click or the arrow button to move the device from the Source List to the Destination List and click OK.

Now click Firmware Update to start the update.

The 1020 FMD will reboot automatically and the Firmware Update Manager will show Updated.

9 Backup and restore

With the 1020 FMD it's possible to make a backup of the software as it's installed in the device. The software will be saved as an FDI file which stands for Flex Data Image. The Backup data assures that when the device fails, a replacement device can be programmed as a copy of the original device. In case of multiple devices which have to be configured similarly, one device can be programmed, and a backup of this device can be used to program the other device.

9.1 Backup

To back up the device, open Pi Mach II. Go to MENU \rightarrow ENVIRONMENT \rightarrow BACKUP DEVICE.

A save dialog is shown. Choose a destination and filename, and click SAVE. The image will be created and saved to this destination.

9.2 Restore

To restore the device, open Pi Mach II. Go to MENU \rightarrow ENVIRONMENT \rightarrow RESTORE DEVICE.

An open dialog is shown. Select the backup file, and click OPEN. The image will be programmed into the device, and the device will restart.

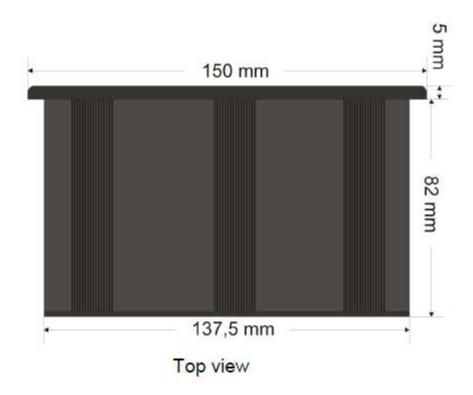
9.3 Progress

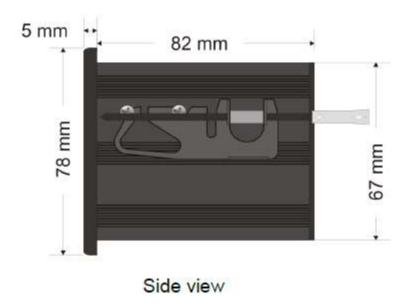
The progress of reading and writing is shown in a progress bar. The action can fail by a loss in communication between the PC and the controller. In that case the progress bar will be stuck somewhere between 0 and 100 %. In this case, check the communication and retry.

10 Standard factory settings

Description	Display	Value	Your setting
Properties	Name		
	Unit label	kN	
	Step	1	
	Decimal point	0,000	
	Max Load	10,009 kN	
	Sample Rate	1600/s	
Stable condition	Range	0,002 kN	
	Time	1,00 s	
Zero tracking	Range	0,000 kN	
	Step	0,000 kN	
	Time	0,00 s	
Range / Interval	Range	0 Parts	
	Max Step	1	
	Mode	Multi Range	
Filter - Overall	Overall Filter	0 dB	
Filter - Digital	Digital Filter	Static App.	
	Cutoff Frequency	1,0 Hz	
	Frequency	50 Hz	
Filter- Display	Filter Range	0,000 kN	
	Display Filter	0 dB	
	Display Rate	25 updates/s	
	Disp.Suppress	0,000 kN	

11 Error codes

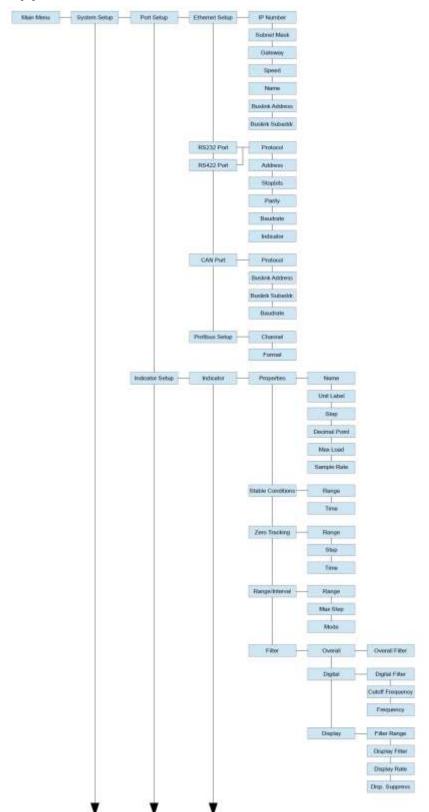

Error code	Description	Solution
2001	Parameter error	Invalid entry, choose valid value
2005	Input value is not valid	Invalid entry, choose value within range
2101	Weigher not stable	Wait for stable and try again
2102	Parameter exceeds maxload	Remove load / edit max load setting
2103	Parameter below zero	Check if scale is blocked
2104	Not in zero range	Remove load
2105	Arithmetic overflow occurred	Change calibration levels
2106	A/D reads all 1's	Check load cell connection
2107	A/D reads all 0's	Check load cell connection
2108	Gain ref. < zero ref.	Change calibration levels
2109	Gain > 0.99984741211	Change calibration levels
2110	Save error	Contact PENKO
2111	Flash ROM exhausted	Contact PENKO
2112	Error on header creation	Contact PENKO
2113	Error on date write	Contact PENKO
2114	Header validation failed	Contact PENKO
2115	De-active old data fail	Contact PENKO
2116	Load errors	Contact PENKO
2117	Item not found in store	Contact PENKO
2118	Error in stored data	Contact PENKO
2119	Bad calibration	Change calibration levels
2120	Action not enabled	-
2121	Multi-point not found	Add multi-point calibration
2122	Calibration table full	Remove calibration points
2123	Not allowed, tare active	Deactivate tare
2124	Action not allowed	-
2125	ADC no power	Check power supply
ccccc	No proper calibration available	Check calibration setting
บบบบบบ	Underflow	Check load cell
		Check platform construction
00000		Charl Israel will
000000	Overflow	Check load cell
		Check platform construction
=====	Display overflow; Exceed maximum display value (max. load)	Reduce load on platform

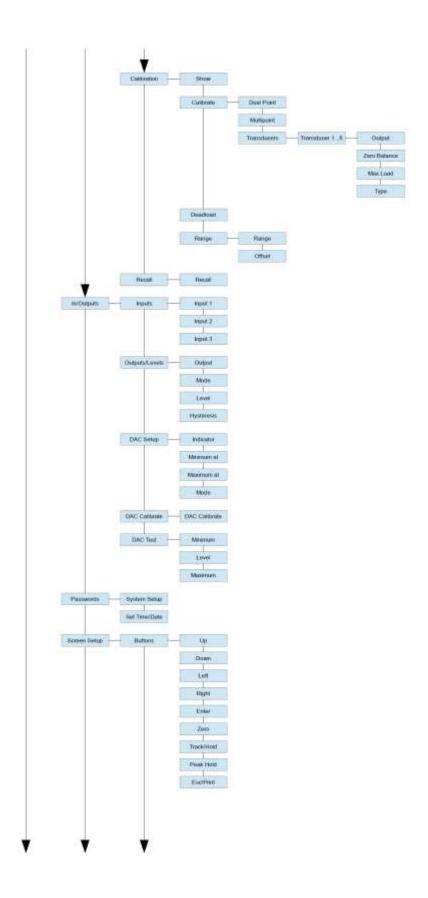


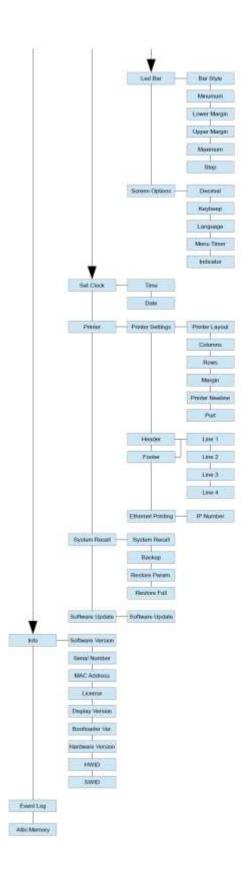
12 Specifications

Туре	Description
Wiring	With sense
Type of sense	Passive
Power supply	18-32 VDC; 7,5 W max.
Excitation voltage	5 VDC
Sensitivity	0,1 μV/d
Selectable ranges	1 mV/V 1,5 mV/V 2 mV/V 2,5 mV/V 3 mV/V
Input voltage @3mV/V	-16 mV to 16 mV
A/D Conversion speed	1600/s
Max. load cell impedance	1200 Ω
Min. Load cell impedance	43,75 Ω
Max. no. of load cells 350 Ω	8
Max. no. of load cells 1.000 Ω	22
Max. number of d	10.000
Display resolution	100.000
Internal resolution	24 bits
Display steps	1,2,5,10,20,50,100,200
Display size	2,8 inch; 320 x 240 pixels
Digital inputs (3)	18 - 28 VDC, PNP or NPN
Digital outputs (4)	Max. 35V/0,5A, PNP or NPN
Analog output (optional)	0/4 - 20/24 mA, 10.000 d
Operating temperature	-10°C to +40°C
Storage temperature	-20°C to +70°C
Relative Humidity	Max. 85 % non-condensing
Protection class	IP45 or IP65 when built into a cabinet
Weight	700 g

Index


A	Ethernet connection17	Manual 100.00%74
		Manual control74
Add/Replace60	F	Manual off74
Address Ethernet64		Manual output level74
Address Ethernet BusLink65	Factory recall87	Margin85
Address Profibus70	Filter type56	Mask subnet64
Address RS232/42266	Filtering the alibi memory93	Max load transducer62
Analog output connection14	Filtering the event log97	Maximum Led bar80
	Footer86	Maximum level75
В	Format Profibus70	Maxload51
	Function analog out75	MaxStep (range/interval)54
Bar Style79	Function inputs71	MenuTimer81
Baudrate CAN69	Function outputs73	Minimum Led bar79
Baudrate RS232/42267		Minimum level75
Buslink Address CAN68	G	Mode (range/interval)55
Buslink Subaddress CAN69		Moving Average57
Buttons functions78	Gateway64	
		N
C	Н	
<u> </u>		Name51
CAL24	Header86	Name Ethernet64
CAN Bus connection18	Hold22	Newline85
Clear alibi90	Hysteresis outputs72	Number of entries alibi89
Columns84		Number of entries event94
Cut Off57	1	
		0
D	Indicator on display82	
	Indicator RS232/42267	Offset input range63
Date/Value alibi90	IP number printer86	Operation mode51
Date/Value event94		Output transducer62
Deadload61	K	Overall filter56
Decimal character80		
Decimal point position53	Keybeep81	P
Delete point60	keypad22	
DHCP64		Parity RS232/42267
Digital inputs connection15	L	PDI Client software26
Digital outputs connection16	-	Peak22
Display indications22	Language81	Pi Mach II software27
Display Tracking: Filter damping .58	Latitude62	Port printer85
Display Tracking: Filter range58	Layout84	Power supply connection11
Display Tracking: Zero suppress58	Level outputs71	Print alibi90
Display value22	Load cell connection12	Print event95
	Lower Margin Led bar79	Profibus connection19
E		Protocol CAN68
	M	Protocol RS232/42266
Elevation62		
Entry Number alibi90	MAC64	
- · · · · · · · · · · · · · · · · · · ·	Manual 0.00%74	


R	Stable time53 Step Led bar80	U
Range (range/interval)54	Step size52	UID alibi90
Range analog out75	Stopbits RS232/42266	UID event94
Range input range63	Sub address Ethernet BusLink 65	Unit indication53
Rate display57	System Setup password76	Upper Margin Led bar79
Record alibi90		USB connection13
Record event94	Τ	
Rows85	<u> </u>	V
RS232/RS422 connection20	T.I.R22	•
	TAC24	Valley22
S	Tag/Code alibi90	•
	Tag/Code event94	Z
Sample rate52	Time/Unit alibi90	
Service50	Time/Unit event94	Zero balance transducer 62
Set Date83	Tracking22	
Set Time83	Tracking range54	
Set Time/Date password76	Tracking step54	
Stable range53	Tracking time54	
-	Type transducer62	


Appendix I - Menu structure

Appendix II - Communication protocols

The following communication protocols are available:

Protocol	Available on port	Description
Modbus TCP	Ethernet (TCP)	Modbus protocol over Ethernet TCP used to connect to PLC.
Modbus ASCII/RTU	RS232/422	Modbus protocol over RS232 used to connect to PLC.
Fins	Ethernet (TCP)	Omron FINS protocol over Ethernet TCP used to connect to PLC.
Ethernet/IP	Ethernet (TCP)	Ethernet/IP protocol used to connect to PLC. The EDS file can be downloaded from the website.
Profibus DP	Profibus	Profibus protocol used to connect to PLC. The GSD file can be downloaded from the website.
PENKO Printer	Ethernet (TCP) RS232/422	PENKO printer protocol to connect ASCII/plain-text printers over Ethernet or serial connection. Zebra ZPL II protocol is supported.
PENKO ASCII	RS232/422 Ethernet (TCP)	PENKO protocol over Ethernet or serial connection.
PENKO Buslink	Ethernet (UDP) CAN	PENKO protocol over Ethernet or CAN connection used to connect PENKO devices to a PENKO FLEX controller.
PENKO Web Interface	Ethernet (TCP)	PENKO protocol over Ethernet to monitor and configure the device with a web browser.
PENKO TP / PDI	Ethernet (UDP) RS232/422 USB	PENKO protocol over Ethernet, serial and USB connection used for communication between the device and the configuration software.

Protocol descriptions and needed files can be downloaded from the PENKO website.

www.penko.com

About PENKO

Our design expertise include systems for manufacturing plants, bulk weighing, check weighing, force measuring and process control. For over 35 years, PENKO Engineering B.V. has been at the forefront of development and production of high-accuracy, high-speed weighing systems and our solutions continue to help cut costs, increase ROI and drive profits for some of the largest global brands, such as Cargill, Sara Lee, Heinz, Kraft Foods and Unilever to name but a few.

Whether you are looking for a simple stand-alone weighing system or a high-speed weighing and dosing controller for a complex automated production line, PENKO has a comprehensive range of standard solutions you can rely on.

Certifications

PENKO sets high standards for its products and product performance which are tested, certified and approved by independent expert and government organizations to ensure they meet – and even – exceed metrology industry guidelines. A library of testing certificates is available for reference on:

http://penko.com/nl/publications_certificates.html

PENKO Professional Services

PENKO is committed to ensuring every system is installed, tested, programmed, commissioned and operational to client specifications. Our engineers, at our weighing center in Ede, Netherlands, as well as our distributors around the world, strive to solve most weighing-system issues within the same day. On a monthly basis PENKO offers free training classes to anyone interested in exploring modern, high-speed weighing instruments and solutions. A schedule of training sessions is found on: www.penko.com/training

PENKO Alliances

PENKO's worldwide network: Australia, Belgium, Brazil, China, Denmark, Germany, Egypt, Finland, France, India, Italy, Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Syria, Turkey, United Kingdom, South Africa, Slovakia Sweden and Switzerland, Singapore. A complete overview you will find on: www.penko.com/dealers

